1. 内容概要
- Multivariate Linear Regression(多元线性回归)
- 多元特征
- 多元变量的梯度下降
- 特征缩放
- Computing Parameters Analytically
- 正规公式(Normal Equation )
- 正规公式非可逆性(Normal Equation Noninvertibility)
2. 重点&难点
1)多元变量的梯度下降
2) 特征缩放
为什么要特征缩放
首先要清楚为什么使用特征缩放。见下面的例子
- 特征缩放前
由图可以知道特征缩放前,表示面积的x1变量的值远大于x2,因此J(θ)图像表示就是椭圆的,导致在梯度下降的过程中,收敛速度非常慢。
- 特征缩放后
对各变量特征缩放后绘制出来的损失函数J(θ)明显收敛更快,这也是为什么需要特征缩放的原因了。
实现方法
- feature scaling
\[
\begin{equation}
x_i := \frac{x_i}{x_\max - x_\min}
\end{equation}
\]
每个输入值除以(max - min)
- mean normalization
\[
\begin{equation}
x_i := \frac{x_i - μ_i}{s_i}
\end{equation}
\]
μ: 均值
s: max - min
3) Normal Equation 正规方程式
Normal Equation
\[
\begin{equation}
θ = (X^T·X)^{﹣1}·X·Y
\end{equation}
\]
与梯度下降方法进行比较
需要选择步长α | 不需要选择步长α |
需要迭代训练很多次 | 一次都不需要迭代训练 |
O(kn) | O(n,计算(X·X)需要花费较长时间 |
即使数据特征n很大,也可以正常工作 | n如果过大,计算会消耗大量时间 |
4) 正规方程不可逆
当X·X不可逆时,很显然此时正规方程将不能正常计算,常见原因如下:
- 冗余特征,在两个特点紧密相关(即它们呈线性关系,例如面积和(长,宽)这两个特征线性相关)
- 太多的特征(例如:m≤n)。 在这种情况下,可以删除一些特征或使用"regularization"。
补充:
- A是可逆矩阵的充分必要条件是 |A|≠0