Description

[bzoj1867][Noi1999][钉子和小球] (动态规划)-LMLPHP

Input

第1行为整数n(2<=n<=50)和m(0<=m<=n)。以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉子被拔去,注意在这n行中空格符可能出现在任何位置。

Output

仅一行,是一个既约分数(0写成0/1),为小球落在编号为m的格子中的概pm。既约分数的定义:A/B是既约分数,当且仅当A、B为正整数且A和B没有大于1的公因子。

Sample Input

5 2
[bzoj1867][Noi1999][钉子和小球] (动态规划)-LMLPHP

Sample Output

7/16
 

Solution

设f[i][j]代表小球落到位置为(i,j)的概率,分数求解即可

#include <stdio.h>
#define L long long
#define RG register inline void Rin(RG int &x) {
x=;RG int c=getchar(),f=;
for(;c<||c>;c=getchar())
if(!(c^))f=-;
for(;c>&&c<;c=getchar())
x=(x<<)+(x<<)+c-;
x*=f; } inline void ploy(RG bool &x) {
RG char c=getchar();
while(c!='*'&&c!='.')c=getchar();
x=c=='*'?true:false; } void Shiki(RG L x) {
if(!x)return;
Shiki(x/);
putchar(x%+); } L gcd(RG L a,RG L b) {
return b?gcd(b,a%b):a; } bool _map[][]; int n,m; struct fr{
L n,d; fr(RG L _=,RG L __=) : n(_),d(__) {} }f[][]; inline void rec(fr &_this) {
L t=gcd(_this.n,_this.d);
_this.n/=t;
_this.d/=t; } fr operator + (const fr &a,const fr &b) {
fr res;
L t=gcd(a.d,b.d);
res.n=b.d/t*a.n+a.d/t*b.n;
res.d=a.d/t*b.d;
return res; } fr operator * (const fr &a,const fr &b) {
fr res(a.n*b.n,a.d*b.d);
rec(res);
return res; } void operator += (fr &a,const fr &b) {
a=a+b; } int main() {
Rin(n),Rin(m);
for(RG int i=; i<=n; i++)
for(RG int j=; j<=i; j++)
ploy(_map[i][j]);
f[][]=fr(,);
for(RG int i=; i<=n; i++)
for(RG int j=; j<=i; j++)
rec(f[i][j]),
_map[i][j]?
f[i+][j]+=f[i][j]*fr(,),f[i+][j+]+=f[i][j]*fr(,):
f[i+][j+]+=f[i][j];
rec(f[n+][m+]);
Shiki(f[n+][m+].n); putchar('/'); Shiki(f[n+][m+].d);
return ;
}
05-11 10:52