http://www.lydsy.com/JudgeOnline/problem.php?id=1867
dp[i][j] 落到(i,j)的方案数
dp[i][j]=0.5*dp[i-1][j] [(i-1,j)位置有钉子] + 0.5*dp[i-1][j-1] [(i-1.j-1)位置有钉子] + dp[i-1][j-2] [(i-1,j-2)位置没有钉子]
#include<cstdio>
#include<iostream> using namespace std; typedef long long LL; #define N 52 bool nail[N][N]; LL getgcd(LL a,LL b) { return !b ? a : getgcd(b,a%b); } struct Fraction
{
LL molecule,denominator; void operator = (int p)
{
molecule=p;
denominator=;
} Fraction operator * (Fraction p)
{
Fraction c;
c.molecule=molecule;
c.denominator=denominator<<;
LL gcd=getgcd(c.molecule,c.denominator);
c.molecule/=gcd;
c.denominator/=gcd;
return c;
} void operator += (Fraction p)
{
if(!denominator)
{
*this=p;
return;
}
Fraction c;
LL gcd=getgcd(denominator,p.denominator);
c.denominator=denominator/gcd*p.denominator;
c.molecule=c.denominator/denominator*molecule+c.denominator/p.denominator*p.molecule;
*this=c;
} bool have()
{
return denominator;
} void print()
{
if(!molecule) denominator=;
cout<<molecule<<'/'<<denominator;
} }half; Fraction dp[N][N]; char getc()
{
char c;
while()
{
c=getchar();
if(c=='*'||c=='.') return c;
}
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
char c;
for(int i=;i<=n;++i)
for(int j=;j<=i;++j)
{
c=getc();
if(c=='*') nail[i][j]=true;
}
dp[][]=;
for(int i=;i<=n+;++i)
for(int j=;j<=i;++j)
{ if(nail[i-][j-] && dp[i-][j-].have()) dp[i][j]+=dp[i-][j-]*half;
if(nail[i-][j] && dp[i-][j].have()) dp[i][j]+=dp[i-][j]*half;
if(!nail[i-][j-] && dp[i-][j-].have()) dp[i][j]+=dp[i-][j-];
}
dp[n+][m+].print();
}
1867: [Noi1999]钉子和小球
Time Limit: 1 Sec Memory Limit: 64 MB
Submit: 880 Solved: 355
[Submit][Status][Discuss]
Description
Input
第1行为整数n(2<=n<=50)和m(0<=m<=n)。以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉子被拔去,注意在这n行中空格符可能出现在任何位置。
Output
仅一行,是一个既约分数(0写成0/1),为小球落在编号为m的格子中的概pm。既约分数的定义:A/B是既约分数,当且仅当A、B为正整数且A和B没有大于1的公因子。
Sample Input
5 2
Sample Output
7/16