本文是Pig系统分析系列中的最后一篇了,主要讨论怎样扩展Pig功能。不仅介绍Pig本身提供的UDFs扩展机制,还从架构上探讨Pig扩展可能性。

补充说明:前些天同事发现twitter推动的Pig On Spark项目:Spork,准备研究下。

UDFs

通过UDFs(用户自己定义函数),能够自己定义数据处理方法,扩展Pig功能。实际上,UDFS除了使用之前须要register/define外。和内置函数没什么不同。

主要的EvalFunc

以内置的ABS函数为例:

public class ABS extends EvalFunc<Double>{
/**
* java level API
* @param input expectsa single numeric value
* @return output returns a single numeric value, absolute value of the argument
*/
public Double exec(Tuple input) throws IOException {
if (input == null || input.size() == 0)
return null; Double d;
try{
d = DataType.toDouble(input.get(0));
} catch (NumberFormatException nfe){
System.err.println("Failed to process input; error -" + nfe.getMessage());
return null;
} catch (Exception e){
throw new IOException("Caught exception processing input row", e);
}
return Math.abs(d);
}
……
public Schema outputSchema(Schema input) ;
public List<FuncSpec> getArgToFuncMapping() throws FrontendException; }
  1. 函数都继承EvalFunc接口,泛型參数Double代表返回类型。

  2. exec方法:输入參数类型为元组,代表一行记录。
  3. outputSchema方法:用于处理输入和输出Schema
  4. getArgToFuncMapping:用于支持各种数据类型重载。

聚合函数

EvalFuc方法也能实现聚合函数,这是由于group操作对每一个分组都返回一条记录,每组中包括一个Bag,所以exec方法中迭代处理Bag中记录就可以。

以Count函数为例:
public Long exec(Tuple input) throws IOException {
try {
DataBag bag = (DataBag)input.get(0);
if(bag==null)
return null;
Iterator it = bag.iterator();
long cnt = 0;
while (it.hasNext()){
Tuple t = (Tuple)it.next();
if (t != null && t.size() > 0 && t.get(0) != null )
cnt++;
}
return cnt;
} catch (ExecException ee) {
throw ee;
} catch (Exception e) {
int errCode = 2106;
String msg = "Error while computing count in " + this.getClass().getSimpleName();
throw new ExecException(msg, errCode, PigException.BUG, e);
}
}

Algebraic 和Accumulator 接口

如前所述,具备algebraic性质的聚合函数在Map-Reduce过程中能被Combiner优化。直观来理解,具备algebraic性质的函数处理过程能被分为三部分:initial(初始化,处理部分输入数据)、intermediate(中间过程,处理初始化过程的结果)和final(收尾,处理中间过程的结果)。

比方COUNT函数,初始化过程为count计数操作。中间过程和收尾为sum求和操作。更进一步。假设函数在这三个阶段中都能进行同样的操作,那么函数具备distributive性质。比方SUM函数。

Pig提供了Algebraic 接口:

public interface Algebraic{
/**
* Get the initial function.
* @return A function name of f_init. f_init shouldbe an eval func.
* The return type off_init.exec() has to be Tuple
*/
public String getInitial(); /**
* Get the intermediatefunction.
* @return A function name of f_intermed. f_intermedshould be an eval func.
* The return type off_intermed.exec() has to be Tuple
*/
public String getIntermed(); /**
* Get the final function.
* @return A function name of f_final. f_final shouldbe an eval func parametrized by
* the same datum as the evalfunc implementing this interface.
*/
public String getFinal();
}

当中每一个方法都返回EvalFunc实现类的名称。

继续以COUNT函数为例,COUNT实现了Algebraic接口。针对下面语句:

input= load 'data' as (x, y);
grpd= group input by x;
cnt= foreach grpd generate group, COUNT(input);
storecnt into 'result';

Pig会重写MR运行计划:

Map
load,foreach(group,COUNT.Initial)
Combine
foreach(group,COUNT.Intermediate)
Reduce
foreach(group,COUNT.Final),store

Algebraic 接口通过Combiner优化降低传输数据量,而Accumulator接口则关注的是内存使用量。UDF实现Accumulator接口后,Pig保证全部key相同的数据(通过Shuffle)以增量的形式传递给UDF(默认pig.accumulative.batchsize=20000)。相同。COUNT也实现了Accumulator接口。

/* Accumulator interface implementation */
private long intermediateCount = 0L;
@Override
public void accumulate(Tuple b) throws IOException {
try {
DataBag bag = (DataBag)b.get(0);
Iterator it = bag.iterator();
while (it.hasNext()){
Tuple t = (Tuple)it.next();
if (t != null && t.size() > 0 && t.get(0) != null) {
intermediateCount += 1;
}
}
} catch (ExecException ee) {
throw ee;
} catch (Exception e) {
int errCode = 2106;
String msg = "Error while computing min in " + this.getClass().getSimpleName();
throw new ExecException(msg, errCode, PigException.BUG, e);
}
} @Override
public void cleanup() {
intermediateCount = 0L;
}
@Override
/*
*当前key都被处理完之后被调用
*/
public Long getValue() {
return intermediateCount;
}

前后端数据传递

通过UDFs构造函数传递数据是最简单的方法。然后通过define语句定义UDF实例时指定构造方法參数。但有些情况下。比方数据在执行期才产生,或者数据不能用String格式表达,这时候就得使用UDFContext了。

UDF通过getUDFContext方法获取保存在ThreadLoacl中的UDFContext实例。

UDFContext包括下面信息:

  1. jconf:Hadoop Configuration。

  2. clientSysProps:系统属性。
  3. HashMap<UDFContextKey,Properties> udfConfs:用户自己保存的属性,当中UDFContextKey由UDF类名生成。

UDFs运行流程

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaWRvbnR3YW50b2Jl/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

Pig架构可扩展性

Pig哲学之三——Pigs Live Anywhere。

理论上。Pig并不被限定执行在Hadoop框架上,有几个能够參考的实现和提议。

  1. Pigen。Pig on Tez。https://github.com/achalsoni81/pigeon,架构图例如以下:Pig系统分析(8)-Pig可扩展性-LMLPHP
  2. Pig的后端抽象层:https://wiki.apache.org/pig/PigAbstractionLayer

    眼下已经实现了PigLatin执行在Galago上。

    http://www.galagosearch.org/

參考资料

Pig官网:http://pig.apache.org/

Pig paper at SIGMOD 2008:Building a High Level DataflowSystem on top of MapReduce:The Pig Experience

Programming.Pig:Dataflow.Scripting.with.Hadoop(2011.9).Alan.Gates

05-11 18:10