对比TensorFlow和Pytorch的动静态图构建上的差异

静态图框架设计好了不能够修改,且定义静态图时需要使用新的特殊语法,这也意味着图设定时无法使用if、while、for-loop等结构,而是需要特殊的由框架专门设计的语法,在构建图时,我们需要考虑到所有的情况(即各个if分支图结构必须全部在图中,即使不一定会在每一次运行时使用到),使得静态图异常庞大占用过多显存。

以动态图没有这个顾虑,它兼容python的各种逻辑控制语法,最终创建的图取决于每次运行时的条件分支选择,下面我们对比一下TensorFlow和Pytorch的if条件分支构建图的实现:

# Author : Hellcat
# Time : 2018/2/9 def tf_graph_if():
import numpy as np
import tensorflow as tf x = tf.placeholder(tf.float32, shape=(3, 4))
z = tf.placeholder(tf.float32, shape=None)
w1 = tf.placeholder(tf.float32, shape=(4, 5))
w2 = tf.placeholder(tf.float32, shape=(4, 5)) def f1():
return tf.matmul(x, w1) def f2():
return tf.matmul(x, w2) y = tf.cond(tf.less(z, 0), f1, f2) with tf.Session() as sess:
y_out = sess.run(y, feed_dict={
x: np.random.randn(3, 4),
z: 10,
w1: np.random.randn(4, 5),
w2: np.random.randn(4, 5)})
return y_out def t_graph_if():
import torch as t
from torch.autograd import Variable x = Variable(t.randn(3, 4))
w1 = Variable(t.randn(4, 5))
w2 = Variable(t.randn(4, 5)) z = 10
if z > 0:
y = x.mm(w1)
else:
y = x.mm(w2) return y if __name__ == "__main__":
print(tf_graph_if())
print(t_graph_if())

计算输出如下:

个人感觉上面的对比不太完美,如果使用TensorFlow的变量来对比,上面函数应该改写如下,

# Author : Hellcat
# Time : 2018/2/9 def tf_graph_if():
import tensorflow as tf x = tf.Variable(dtype=tf.float32, initial_value=tf.random_uniform(shape=[3, 4]))
z = tf.constant(dtype=tf.float32, value=10)
w1 = tf.Variable(dtype=tf.float32, initial_value=tf.random_uniform(shape=[4, 5]))
w2 = tf.Variable(dtype=tf.float32, initial_value=tf.random_uniform(shape=[4, 5])) def f1():
return tf.matmul(x, w1) def f2():
return tf.matmul(x, w2) y = tf.cond(tf.less(z, 0), f1, f2) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
y_out = sess.run(y)
return y_out

输出没什么变化,

可以看到,TensorFlow的if条件分支使用函数tf.cond(tf.less(z, 0), f1, f2)来实现,这和Pytorch直接使用if的逻辑很不同,而且,动态图不需要feed,直接运行便可。简单对比,可以看到Pytorch的逻辑更为简洁,让人很感兴趣。

05-06 21:26