大致题意:统计平面上由曼哈顿距离小于等于c的点对组成联通块的个数。

  曼哈顿生成树的模板题。有关讲解:http://blog.csdn.net/acm_cxlove/article/details/8890003

  

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define MAXN 100100
#define MAXE MAXN*8
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3fLL
typedef long long qword;
int n,m;
struct edge
{
int x,y;
qword d;
}e[MAXE];
int tope=-;
bool cmp_d(edge e1,edge e2)
{
return e1.d<e2.d;
}
int uf[MAXN];
int get_fa(int now)
{
return uf[now]==now ? now : uf[now]=get_fa(uf[now]);
}
int comb(int x,int y)
{
x=get_fa(x);
y=get_fa(y);
if (x==y)return false;
uf[x]=y;
return true;
}
struct point
{
qword x,y;
int id;
}pl[MAXN];
bool cmp_x(point p1,point p2)
{
if (p1.x==p2.x)return p1.y>p2.y;
return p1.x>p2.x;
}
void rotate1()
{
for (int i=;i<n;i++)
pl[i].x=-pl[i].x;
}
void rotate2()
{
for (int i=;i<n;i++)
pl[i].y=-pl[i].y;
}
void rotate3()
{
for (int i=;i<n;i++)
swap(pl[i].x,pl[i].y);
}
qword h[MAXN],toph=-;
qword tarr[MAXN];
int tarr_id[MAXN];
void Add_tarr(int pos,qword v,int id)
{
while (pos<MAXN)
{
tarr[pos]=min(tarr[pos],v);
if (v==tarr[pos])tarr_id[pos]=id;
pos+=pos&(-pos);
}
}
pair<qword,int> Qry_tarr(int pos)
{
pair<qword,int> ret;
ret.first=INFL;
while (pos)
{
ret.first=min(ret.first,tarr[pos]);
if (ret.first==tarr[pos])
ret.second=tarr_id[pos];
pos-=pos&(-pos);
}
return ret;
}
void work()
{
int i,j;
toph=;
memset(tarr,0x3f,sizeof(tarr));
for (i=;i<n;i++)
h[++toph]=pl[i].x-pl[i].y;
sort(h+,h+toph+);
toph=unique(h+,h+toph+)-h-;
sort(pl,pl+n,cmp_x);
for (i=;i<n;i++)
{
pair<qword,int> pr;
qword t=pl[i].x-pl[i].y;
t=lower_bound(h+,h+toph+,t)-h;
pr=Qry_tarr(t);
if (pr.first!=INFL)
{
e[++tope].x=pl[i].id;
e[tope].y=pr.second;
e[tope].d=pr.first-pl[i].x-pl[i].y;
}
Add_tarr(t,pl[i].x+pl[i].y,pl[i].id);
}
}
int is_root[MAXN],uf_size[MAXN];
int main()
{
freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
int i,j,k,x,y,z;
scanf("%d%d",&n,&m);
for (i=;i<n;i++)
{
scanf("%lld%lld",&pl[i].x,&pl[i].y);
pl[i].id=i;
}
//
work();
//
rotate3();
work();
rotate3();
//
rotate2();
rotate3();
work();
rotate3();
rotate2();
//
rotate2();
work();
rotate2();
//
rotate2();
rotate1();
work();
rotate1();
rotate2();
//
rotate1();
rotate2();
rotate3();
work();
rotate3();
rotate2();
rotate1();
//
rotate1();
rotate3();
work();
rotate3();
rotate1();
//
rotate1();
work();
rotate1();
sort(e,e+tope+,cmp_d);
for (i=;i<=n;i++)uf[i]=i;
for (i=;i<=tope && e[i].d<=m;i++)
{
comb(e[i].x,e[i].y);
}
int ans2=;
for (i=;i<n;i++)
{
is_root[get_fa(i)]=;
uf_size[uf[i]]++;
}
for (i=;i<n;i++)
is_root[i]+=is_root[i-];
for (i=;i<n;i++)
ans2=max(ans2,uf_size[i]);
printf("%d %d\n",is_root[n-],ans2);
return ;
}
05-04 11:02