N次剩余
给定 \(N,a,P\),且 \(P\) 最好为质数
可以算出 \(x^N\equiv a(mod~p)\) 的解
首先可以算出 \(P\) 的原根 \(g\)
解方程 \(g^y\equiv b(mod~p)\),这个直接 \(BSGS\)
设 \(g^z\equiv x(mod~p)\)
那么 \(g^{za}=g^y(mod~p)\iff za\equiv y(mod~\varphi(p))\),这个直接 \(exgcd\)
无解在 \(BSGS\) 和 \(exgcd\) 的时候判掉,最后快速幂得到答案
二次剩余
求 \(x^2\equiv n(mod~p)\)的一个解 \(x\),其中 \(p\) 为一个奇素数
有二次剩余的条件
\[n^{\frac{p-1}{2}} \equiv 1(mod~p)\]
证明
首先有 \(n^{p-1}\equiv 1(mod~p)\)
若存在一个解 \(a\),那么 \(a^{p-1}\equiv 1(mod~p)\) 且 \(a^{2}\equiv n(mod~p)\)
所以
\[a^{p-1}\equiv n^{\frac{p-1}{2}}\equiv 1(mod~p)\]
算法一
如果 \(g\) 为 \(p\) 的原根,且 \(g^{a}\equiv n(mod~p)\) 那么解就是 \(g^{\frac{a}{2}}\)
证明
结合上面的条件,有 \(g^{a\frac{p-1}{2}}\equiv 1(mod~p)\)
因为 \(g^{p-1}\equiv 1(mod~p)\),那么 \(a\) 一定为偶数
可以在 \(\Theta(\sqrt{p})\) 的复杂度内找到解
算法二
随机一个数字 \(a\)
使得 \(a^2-n\) 不存在二次剩余,期望次数为 \(2\)
定义一个新的数域,设 \(\omega = \sqrt{a^2-n}\) (类似于 \(i=\sqrt{-1}\))
那么所有的数都可以表示为 \(a+b\omega\) 的形式
根据有解的条件可以得到
\[\omega^{p-1}\ne 1(mod~p)\]
而 \(\omega^{2(p-1)}\equiv 1(mod~p)\) 所以 \(\omega^{p-1}\equiv -1(mod~p)\)
定理 \((a+\omega)^{p}=a-\omega\)
证明
二项式定理展开得到 \(\sum_{i=0}^{p}\binom{p}{i}a^i\omega^{p-i}\)
显然除了第 \(0\) 项和第 \(p\) 项的组合数不是 \(p\) 的倍数
那么就是 \(a^p+\omega^{p}\)
由于 \(a^{p-1}\equiv 1(mod~p)\) 且 \(\omega^{p-1}\equiv -1(mod~p)\)
那么得到 \(a^p+\omega^{p}=a-\omega\)
这就好了,因为 \((a-\omega)(a+\omega)=a^2-\omega^2=n\)
所以 \((a+\omega)^{\frac{p+1}{2}}\equiv \sqrt{n}(mod~p)\)
现在只要证明 \((a+\omega)^{\frac{p+1}{2}}\) 不存在 \(\omega\) 项就好了
假设 \((a+\omega)^{\frac{p+1}{2}}=x+y\omega\)
那么 \((x+y\omega)^2=n\)
所以 \(x=0\) 或者 \(y=0\)
如果 \(x=0\) 且 \(y\ne0\),那么 \((x+y\omega)^2=y^2(a^2-n)=n\)
因为 \(a^2-n\) 没有二次剩余,而 \(y^2\) 显然有二次剩余
所以 \(n\) 没有二次剩余,矛盾
得到 \(y= 0\)
总结一下
第一步随机一个 \(a\),使得\(a^2-n\) 不存在二次剩余
第二步直接重载运算求出 \((a+\omega)^{\frac{p+1}{2}}\) 即 \(n\) 的二次剩余