题意:已知中序后序序列,求一个叶子到根路径上权和最小,如果多解,则叶子权值尽量小。
分析:已知中序后序建树,再dfs求从根到各叶子的权和比较大小
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
typedef long long ll;
typedef unsigned long long llu;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const ll LL_INF = 0x3f3f3f3f3f3f3f3f;
const ll LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {, , -, };
const int dc[] = {-, , , };
const double pi = acos(-1.0);
const double eps = 1e-;
const int MAXN = + ;
const int MAXT = + ;
using namespace std;
string a, b;
vector<int> in_order, post_order;
int leftchild[MAXN];
int rightchild[MAXN];
int anssum;
int ansv;
int build_tree(int L1, int R1, int L2, int R2){
if(L1 > R1) return ;
int root = post_order[R2];
int st = L1;
while(in_order[st] != root) ++st;
int cnt = st - L1;//一定要通过个数来控制取出来的中序后序序列的左右下标
leftchild[root] = build_tree(L1, st - , L2, L2 + cnt - );//值为root的左孩子结点的值,第四个参数不能写成st-1,因为取出来的相对应的中序和后序序列不一定是下标对齐的
rightchild[root] = build_tree(st + , R1, L2 + cnt, R2 - );
return root;
}
void dfs(int root, int sum){
sum += root;
if(!leftchild[root] && !rightchild[root]){//叶子
if(sum < anssum || (sum == anssum && root < ansv)){
anssum = sum;
ansv = root;
}
}
if(leftchild[root]){
dfs(leftchild[root], sum);
}
if(rightchild[root]){
dfs(rightchild[root], sum);
}
}
int main(){
while(getline(cin, a)){
in_order.clear();
post_order.clear();
memset(leftchild, , sizeof leftchild);
memset(rightchild, , sizeof rightchild);
stringstream s1(a);
int x;
while(s1 >> x){
in_order.push_back(x);
}
getline(cin, b);
stringstream s2(b);
while(s2 >> x){
post_order.push_back(x);
}
int len = in_order.size();
build_tree(, len - , , len - );
int root = post_order[len - ];
anssum = INT_M_INF;
ansv = INT_M_INF;
dfs(root, );
printf("%d\n", ansv);
}
}
已知中序和后序可建树,建成后,可输出前序序列。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
typedef long long ll;
typedef unsigned long long llu;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const ll LL_INF = 0x3f3f3f3f3f3f3f3f;
const ll LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {, , -, };
const int dc[] = {-, , , };
const double pi = acos(-1.0);
const double eps = 1e-;
const int MAXN = + ;
const int MAXT = + ;
using namespace std;
string a, b;
vector<int> in_order, post_order, pre_order;
int leftchild[MAXN];
int rightchild[MAXN];
int build_tree(int L1, int R1, int L2, int R2){
if(L1 > R1) return ;
int root = post_order[R2];
int st = L1;
while(in_order[st] != root) ++st;
int cnt = st - L1;//一定要通过个数来控制取出来的中序后序序列的左右下标
leftchild[root] = build_tree(L1, st - , L2, L2 + cnt - );//值为root的左孩子结点的值,第四个参数不能写成st-1,因为取出来的相对应的中序和后序序列不一定是下标对齐的
rightchild[root] = build_tree(st + , R1, L2 + cnt, R2 - );
return root;
}
void dfs(int root){
pre_order.push_back(root);
if(leftchild[root]){
dfs(leftchild[root]);
}
if(rightchild[root]){
dfs(rightchild[root]);
}
}
int main(){
while(getline(cin, a)){
in_order.clear();
post_order.clear();
pre_order.clear();
memset(leftchild, , sizeof leftchild);
memset(rightchild, , sizeof rightchild);
stringstream s1(a);
int x;
while(s1 >> x){
in_order.push_back(x);
}
getline(cin, b);
stringstream s2(b);
while(s2 >> x){
post_order.push_back(x);
}
int len = in_order.size();
build_tree(, len - , , len - );
int root = post_order[len - ];
dfs(root);
for(int i = ; i < len; ++i){
if(i) printf(" ");
printf("%d", pre_order[i]);
}
printf("\n");
}
}