前言
本章主要讲述了如何在mapreduce任务中添加自定义的计数器,从所有任务中聚合信息,并且最终输出到mapreduce web ui中得到统计信息。
准备工作
数据集:ufo-60000条记录,这个数据集有一系列包含下列字段的UFO目击事件记录组成,每条记录的字段都是以tab键分割,请看http://www.cnblogs.com/cafebabe-yun/p/8679994.html
- sighting date:UFO目击事件发生时间
- Recorded date:报告目击事件的时间
- Location:目击事件发生的地点
- Shape:UFO形状
- Duration:目击事件持续时间
- Dexcription:目击事件的大致描述
例子:
19950915 19950915 Redmond, WA 6 min. Young man w/ 2 co-workers witness tiny, distinctly white round disc drifting slowly toward NE. Flew in dir. 90 deg. to winds.
需要共享的数据:州名缩写与全称的对应关系
数据:
AL Alabama
AK Alaska
AZ Arizona
AR Arkansas
CA California
自定义计数器的使用
- 将数据集 ufo.tsv 上传到hdfs上
hadoop dfs -put ufo.tsv ufo.tsv
- 将共享数据数据上传到hdfs上,命令同上
- 创建文件 UFOCountingRecordValidationMapper.java ,并且输入以下代码:
import java.io.IOException; import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapred.lib.*; public class UFOCountingRecordValidationMapper extends MapReduceBase implements Mapper<LongWritable, Text, LongWritable, Text> {
public enum LineCounters {
BAD_LINES,
TOO_MANY_TABS,
TOO_FEW_TABS
}; @Override
public void map(LongWritable key, Text value, OutputCollector<LongWritable, Text> output, Reporter reporter) throws IOException {
String line = value.toString();
if(validate(line, reporter)) {
output.collect(key, value);
}
} private boolean validate(String line, Reporter reporter) {
String[] words = line.split("\t");
if (words.length != 6) {
if (words.length < 6) {
reporter.incrCounter(LineCounters.TOO_MANY_TABS
, 1);
} else {
reporter.incrCounter(LineCounters.TOO_FEW_TABS, 1);
}
reporter.incrCounter(LineCounters.BAD_LINES, 1);
if ((reporter.getCounter(LineCounters.BAD_LINES).getCounter() % 10) == 0) {
reporter.setStatus("Got 10 bad lines.");
System.err.println("Read another 10 bad lines.");
}
return false;
}
return true;
}
}
- 创建文件 UFOLocation3.java ,并输入以下代码:
import java.io.*;
import java.util.*;
import java.net.*;
import java.util.regex.*; import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapred.lib.*; public class UFOLocation3 {
public static class MapClass extends MapReduceBase implements Mapper<LongWritable, Text, Text, LongWritable> {
private final static LongWritable one = new LongWritable(1);
private static Pattern locationPattern = Pattern.compile("[a-zA-Z]{2}[^a-zA-Z]*$");
private Map<String, String> stateNames; @Override
public void configure(JobConf job) {
try {
Path[] cacheFiles = DistributedCache.getLocalCacheFiles(job);
setupStateMap(cacheFiles[0].toString());
} catch (IOException e) {
System.err.println("Error reading state file.");
System.exit(1);
}
} private void setupStateMap(String fileName) throws IOException {
Map<String, String> stateCache = new HashMap<String, String>();
BufferedReader reader = new BufferedReader(new FileReader(fileName));
String line = null;
while((line = reader.readLine()) != null) {
String[] splits = line.split("\t");
stateCache.put(splits[0], splits[1]);
}
stateNames = stateCache;
} @Override
public void map(LongWritable key, Text value, OutputCollector<Text, LongWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
String[] fields = line.split("\t");
String location = fields[2].trim();
if(location.length() >= 2) {
Matcher matcher = locationPattern.matcher(location);
if(matcher.find()) {
int start = matcher.start();
String state = location.substring(start, start + 2);
output.collect(new Text(lookupState(state.toUpperCase())), one);
}
}
} private String lookupState(String state) {
String fullName = stateNames.get(state);
if(fullName == null || "".equals(fullName)) {
fullName = state;
}
return fullName;
}
} public static void main(String...args) throws Exception {
Configuration config = new Configuration();
JobConf conf = new JobConf(config, UFOLocation3.class);
conf.setJobName("UFOLocation3");
DistributedCache.addCacheFile(new URI("/user/root/states.txt"), conf);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(LongWritable.class); JobConf mapconf1 = new JobConf(false);
ChainMapper.addMapper(conf, UFOCountingRecordValidationMapper.class, LongWritable.class, Text.class, LongWritable.class, Text.class, true, mapconf1);
JobConf mapconf2 = new JobConf(false);
ChainMapper.addMapper(conf, MapClass.class, LongWritable.class, Text.class, Text.class, LongWritable.class, true, mapconf2);
conf.setMapperClass(ChainMapper.class);
conf.setCombinerClass(LongSumReducer.class);
conf.setReducerClass(LongSumReducer.class); FileInputFormat.setInputPaths(conf, args[0]);
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}
- 编译上述的两个文件
javac UFOCountingRecordValidationMapper.java UFOLocation3.java
- 将编译好的文件打包成jar文件
jar cvf ufo3.jar UFO*class
- 在hadoop上执行jar包
hadoop cvf ufo3.jar UFOLocation3 ufo.tsv output
- 查看输出结果
hadoop dfs -cat output/part-00000
- 在mapreduce web ui页面上查看统计信息
- 相应的job,进入job的统计信息页面
- 查看统计信息