本文以使用混沌方法生成若干种谢尔宾斯基相关的分形图形。
(1)谢尔宾斯基三角形
给三角形的3个顶点,和一个当前点,然后以以下的方式进行迭代处理:
a.随机选择三角形的某一个顶点,计算出它与当前点的中点位置;
b.将计算出的中点做为当前点,再重新执行操作a
相关代码如下:
class SierpinskiTriangle : public FractalEquation
{
public:
SierpinskiTriangle()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; m_triangleX[] = 0.0f;
m_triangleY[] = FRACTAL_RADIUS; m_triangleX[] = FRACTAL_RADIUS*sinf(PI/);
m_triangleY[] = -FRACTAL_RADIUS*sinf(PI/); m_triangleX[] = -m_triangleX[];
m_triangleY[] = m_triangleY[];
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
int r = rand()%;
outX = (x + m_triangleX[r])*0.5f;
outY = (y + m_triangleY[r])*0.5f;
outZ = z;
} private:
float m_triangleX[];
float m_triangleY[];
};
关于基类FractalEquation的定义见:混沌与分形
最终生成的图形为:
通过这一算法可以生成如下图像:
(2)谢尔宾斯基矩形
既然能生成三角形的图形,那么对于矩形会如何呢?尝试下吧:
class SierpinskiRectangle : public FractalEquation
{
public:
SierpinskiRectangle()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; m_ParamA = 1.0f;
m_ParamB = 1.0f; m_rectX[] = FRACTAL_RADIUS;
m_rectY[] = FRACTAL_RADIUS; m_rectX[] = FRACTAL_RADIUS;
m_rectY[] = -FRACTAL_RADIUS; m_rectX[] = -FRACTAL_RADIUS;
m_rectY[] = -FRACTAL_RADIUS; m_rectX[] = -FRACTAL_RADIUS;
m_rectY[] = FRACTAL_RADIUS;
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
int r = rand()%;
outX = (x + m_rectX[r])*0.5f;
outY = (y + m_rectY[r])*0.5f;
outZ = z;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;} void SetParamA(float v)
{
m_ParamA = v; m_rectX[] = FRACTAL_RADIUS*m_ParamA;
m_rectX[] = FRACTAL_RADIUS*m_ParamA;
m_rectX[] = -FRACTAL_RADIUS*m_ParamA;
m_rectX[] = -FRACTAL_RADIUS*m_ParamA;
} void SetParamB(float v)
{
m_ParamB = v; m_rectY[] = FRACTAL_RADIUS*m_ParamB;
m_rectY[] = -FRACTAL_RADIUS*m_ParamB;
m_rectY[] = -FRACTAL_RADIUS*m_ParamB;
m_rectY[] = FRACTAL_RADIUS*m_ParamB;
} private:
float m_rectX[];
float m_rectY[];
};
图形如下:
噢,SHIT,毫无规律可言。
那就变动一下吧:
class FractalSquare : public FractalEquation
{
public:
FractalSquare()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; m_rectX[] = FRACTAL_RADIUS;
m_rectY[] = FRACTAL_RADIUS; m_rectX[] = FRACTAL_RADIUS;
m_rectY[] = -FRACTAL_RADIUS; m_rectX[] = -FRACTAL_RADIUS;
m_rectY[] = -FRACTAL_RADIUS; m_rectX[] = -FRACTAL_RADIUS;
m_rectY[] = FRACTAL_RADIUS;
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
int r = rand()%;
if (r < )
{
outX = (x + m_rectX[r])*0.5f;
outY = (y + m_rectY[r])*0.5f;
}
else
{
outX = x*0.5f;
outY = y*0.5f;
}
outZ = z;
} private:
float m_rectX[];
float m_rectY[];
};
看上去还有点样。
(3)谢尔宾斯基五边形
四边形是不行的,那再试下五边:
// 五边形
class SierpinskiPentagon : public FractalEquation
{
public:
SierpinskiPentagon()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; for (int i = ; i < ; i++)
{
m_pentagonX[i] = sinf(i*PI*/);
m_pentagonY[i] = cosf(i*PI*/);
}
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
int r = rand()%;
outX = (x + m_pentagonX[r])*0.5f;
outY = (y + m_pentagonY[r])*0.5f;
outZ = z;
} private:
float m_pentagonX[];
float m_pentagonY[];
};
有点样子,那就以此算法为基础,生成幅图像看看:
有人称谢尔宾斯基三角形为谢尔宾斯基坟垛,当我看到这幅图时,有一种恐怖的感觉。邪恶的五角形,总感觉里面有数不清的骷髅。
看来二维空间中谢尔宾斯基的单数可以生成分形图形,而双数则为无序的混沌。
(4)谢尔宾斯基四面体
再由二维扩展到三维看看:
class SierpinskiTetrahedron : public FractalEquation
{
public:
SierpinskiTetrahedron()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; m_vTetrahedron[] = YsVector(0.0f, 0.0f, 0.0f);
m_vTetrahedron[] = YsVector(0.0f, 1.0f, 0.0f);
m_vTetrahedron[] = YsVector(YD_REAL_SQRT_3/, 0.5f, 0.0f);
m_vTetrahedron[] = YsVector(YD_REAL_SQRT_3/, 0.5f, YD_REAL_SQRT_3*YD_REAL_SQRT_2/); YsVector vCenter = m_vTetrahedron[] + m_vTetrahedron[] + m_vTetrahedron[] + m_vTetrahedron[];
vCenter *= 0.25f; m_vTetrahedron[] -= vCenter;
m_vTetrahedron[] -= vCenter;
m_vTetrahedron[] -= vCenter;
m_vTetrahedron[] -= vCenter; m_vTetrahedron[] *= FRACTAL_RADIUS;
m_vTetrahedron[] *= FRACTAL_RADIUS;
m_vTetrahedron[] *= FRACTAL_RADIUS;
m_vTetrahedron[] *= FRACTAL_RADIUS;
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
int r = rand()%;
outX = (x + m_vTetrahedron[r].x)*0.5f;
outY = (y + m_vTetrahedron[r].y)*0.5f;
outZ = (z + m_vTetrahedron[r].z)*0.5f;
} bool Is3D() const {return true;} private:
YsVector m_vTetrahedron[];
};
(5)其他
谢尔宾斯基三角形是一种很神的东西,我写过一些生成图像的算法,常常不知不觉中就出现了谢尔宾斯基三角形。如细胞生长机
再如:
之前我写过几篇与谢尔宾斯基分形相关的文章