http://acm.timus.ru/problem.aspx?space=1&num=1132

题意:

求 x^2 ≡ n mod p  p是质数 的 解

本题中n>=1

特判p=2,接下来求当p是奇素数时的解

引理1:Timus 1132 Square Root(二次剩余)-LMLPHP

引理2:方程有解当且仅当Timus 1132 Square Root(二次剩余)-LMLPHP

定理:

设a满足 Timus 1132 Square Root(二次剩余)-LMLPHP不是模p的二次剩余,

Timus 1132 Square Root(二次剩余)-LMLPHP无解,

那么Timus 1132 Square Root(二次剩余)-LMLPHP是二次剩余方程Timus 1132 Square Root(二次剩余)-LMLPHP的解

Timus 1132 Square Root(二次剩余)-LMLPHP

#include<cstdio>
#include<cstdlib>
#include<algorithm> using namespace std; typedef long long LL; int w; struct T
{
int p,d;
}; int mod(LL a,int p)
{
a%=p;
if(a<) a+=p;
return a;
} int Pow(int a,int b,int p)
{
int res=;
for(;b;a=1LL*a*a%p,b>>=)
if(b&) res=1LL*res*a%p;
return res;
} //求勒让德符号
int Legendre(int a,int p)
{
return Pow(a,p->>,p);
} //二次域上的乘法
T mul(T a,T b,int p)
{
T ans;
ans.p=(1LL*a.p*b.p%p+1LL*a.d*b.d%p*w%p)%p;
ans.d=(1LL*a.p*b.d%p+1LL*a.d*b.p%p)%p;
return ans;
} //二次域上的快速幂
T power(T a,int b,int p)
{
T ans;
ans.p=;
ans.d=;
for(;b;a=mul(a,a,p),b>>=)
if(b&) ans=mul(ans,a,p);
return ans;
} int solve(int n,int p)
{
if(p==) return ;
if(Legendre(n,p)+==p) return -;
int a;
LL t;
while()
{
a=rand()%p;
t=1LL*a*a-n;
w=mod(t,p);
if(Legendre(w,p)+==p) break;
}
T tmp;
tmp.p=a;
tmp.d=;
T ans=power(tmp,p+>>,p);
return ans.p;
} int main()
{
int t;
scanf("%d",&t);
int n,p;
int a,b;
while(t--)
{
scanf("%d%d",&n,&p);
n%=p;
a=solve(n,p);
if(a==-)
{
puts("No root");
continue;
}
b=p-a;
if(a>b) swap(a,b);
if(a==b) printf("%d\n",a);
else printf("%d %d\n",a,b);
}
}
05-11 18:17