题目描述
vigoss18 辞职成功终于逃出了公司,但是没过太久,公司就发现vigoss18 的所作所为,于是派人来把他抓
回去。
vigoss18 必须一直跑路,躲避公司的围捕。可以抽象的看成一个有向图,图中可能存在重边和自环。
刚开始他站在位置1,每单位时间vigoss18 必须从目前站的位置,等概率选择一条边然后移动到对应的节
点上去或者不动(如果当前节点有t条边,则有1/(t+1)的概率选择一条边移动或者原地不动),可以认为每次需
要花费1 单位时间。
他就这样一直跑一直跑,过了很长很长的时间...
公司把你派出来寻找vigoss18,如果能抓到他,你将能升官发财赢取白富美走向人生巅峰。
但是你精力有限,不是太走的开身,所以写了一个程序,来计算vigoss18 在每个位置的概率,可以认为过
了很长时间以后,vigoss18 在每个位置的概率是收敛的。所以你需要告诉上司,他最可能在哪个位置(概率
最大的那个位置)。
你的上司并不想知道过程,他只想知道结果,所以你只需要告诉他这个概率最大是多少即可。
输入描述:
多组输入,保证绝大部分为小数据。
每组输入第一行n m(1<=n<=100,1<=m<=10000),表示n个点m条有向边。
接下来m行,每行u v(1<=u,v<=n),表示有一条有向边从u连向v
输出描述:
算出vigoss18在所有位置的概率,并输出其中的最大值即可。
你的答案与标准答案的误差应保持在1e-6以内。
示例1
输入
3 3
1 2
2 3
3 1
输出
0.333333333
题解
$dp$。
$dp[i][j]$表示走$i$步,停在$j$的概率,$dp[i][j]$可以从$dp[i-1][*]$得到,拿矩阵快速幂跑跑就能得到比较高的精度。
#include <bits/stdc++.h>
using namespace std; const int maxn = 100 + 10;
int g[maxn][maxn];
int out[maxn];
int n, m; struct M {
int r, c;
double a[maxn][maxn];
}; M mul(const M &a, const M &b) {
M res;
res.r = a.r;
res.c = b.c;
for(int i = 1; i <= res.r; i ++) {
for(int j = 1; j <= res.c; j ++) {
res.a[i][j] = 0;
for(int k = 1; k <= a.c; k ++) {
res.a[i][j] = res.a[i][j] + a.a[i][k] * b.a[k][j];
}
}
}
return res;
} int main() {
while(~scanf("%d%d", &n, &m)) {
for(int i = 1; i <= n; i ++) {
out[i] = 0;
for(int j = 1; j <= n; j ++) {
g[i][j] = 0;
}
}
while(m --) {
int u, v;
scanf("%d%d", &u, &v);
g[u][v] ++;
out[u] ++;
} M A;
A.r = n;
A.c = n;
for(int i = 1; i <= n; i ++) {
for(int j = 1; j <= n; j ++) {
if(i == j) A.a[i][j] = 1.0;
else A.a[i][j] = 0.0;
}
} M B;
B.r = 1;
B.c = n;
for(int j = 1; j <= n; j ++) {
if(j == 1) B.a[1][j] = 1.0;
else B.a[1][j] = 0.0;
} M C;
C.r = n;
C.c = n;
for(int j = 1; j <= n; j ++) {
for(int i = 1; i <= n; i ++) {
C.a[i][j] = 0.0;
// i -> j
if(i == j) {
C.a[i][j] = 1.0 / (out[i] + 1);
} else {
C.a[i][j] = 1.0 * g[i][j] / (out[i] + 1);
}
}
} int b = 0x7FFFFFFF;
while(b) {
if(b & 1) B = mul(B, C);
b = b / 2;
C = mul(C, C);
}
A = mul(A, B); double ans = 0.0;
for(int j = 1; j <= n; j ++) {
ans = max(ans, A.a[1][j]);
}
printf("%.8f\n", ans); }
return 0;
}