title: 【概率论】4-5:均值和中值(The Mean and the Median)
categories:
- Mathematic
- Probability
keywords:
- Mean
- Median
- Mean Squared Error
- Mean Absolute Error
toc: true
date: 2018-03-25 21:01:04
Abstract: 本文介绍均值和中值的对比,以及最小平方误差,最小绝对误差
Keywords: Mean,Median,Mean Squared Error,Mean Absolute Error
开篇废话
昨天犯了个大错误,google分析配置出错了,所以这两天博客访问一直显示零,所以昨天都很沮丧,生活有时候就这样,一些错误,后果非常让人非常沮丧,我们在面对这些沮丧的结果时的态度能决定我们的所有。
均值是度量分布中心位置的一种方法,中值也是,这就是我们上一篇说到的,关于一个属性的定义,我们现在定义分布的中心位置,就有了两种方法,这两种都能定义中心的合理方法,各有各的优点,也有自己的缺点,所以我们今天就来对比下这两种中心位置的数字特点。
The Median
4.1中介绍过一个分布的的期望,是在随机变量所在的数轴的重心位置,这种角度下,期望是一个中心位置。
另一种就是假设存在某个随机变量 m0m_0m0 小于 m0m_0m0 对应的概率是 1/21/21/2 大于 m0m_0m0 的对应概率为 1/21/21/2 这从某种意义上说也是一个中心位置。
两个不一样的定义方式,就有两种不同的方法用于不同的问题
最简单的例子就是图像处理里面两种不同的滤波,均值滤波和中值滤波,对应处理的噪声也完全不同。
均值,也就是期望我们已经研究了4篇了,今天我们主要研究一下中值,虽然在c.d.f中有介绍,但是我们还是重新说说。
值得一提的是与均值不同,分布的均值可以有一个或者没有,而中值可以有一个,还可以有很多个,这个我们后面会说到。
中值的定义如上,还有一种跟奇特的说法和上面是等价的。
两种定义中值的方法得到一样的结果。值得注意的就是一点,中值可能不止一个,当中值不止一个的时候我们这里选用最小的作为中值,当然,也可以选中间的,或者最大的,这取决于你自己的需求。
文章写到这里,书上开始写