▶ 书中第四章部分程序,包括在加上自己补充的代码,图的前序、后序和逆后续遍历,以及传递闭包
● 图的前序、后序和逆后续遍历
package package01; import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Digraph;
import edu.princeton.cs.algs4.EdgeWeightedDigraph;
import edu.princeton.cs.algs4.DirectedEdge;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.Stack; public class class01
{
private boolean[] marked;
private int[] pre; // 前序顶点列表(索引 -> 顶点)
private int[] post; // 后序顶点列表
private Queue<Integer> preorder; // 前序队列(顶点)
private Queue<Integer> postorder; // 后续队列
private int preCounter; // 前序计数器
private int postCounter; // 后序计数器 public class01(Digraph G)
{
pre = new int[G.V()];
post = new int[G.V()];
postorder = new Queue<Integer>();
preorder = new Queue<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
{
if (!marked[v])
dfs(G, v);
}
} public class01(EdgeWeightedDigraph G)
{
pre = new int[G.V()];
post = new int[G.V()];
postorder = new Queue<Integer>();
preorder = new Queue<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
{
if (!marked[v])
dfs(G, v);
}
} private void dfs(Digraph G, int v)
{
marked[v] = true;
pre[v] = preCounter++; // 前序和后序差别在于,将当前顶点加入队列以及递归的先后顺序
preorder.enqueue(v);
for (int w : G.adj(v))
{
if (!marked[w])
dfs(G, w);
}
postorder.enqueue(v);
post[v] = postCounter++;
} private void dfs(EdgeWeightedDigraph G, int v)
{
marked[v] = true;
pre[v] = preCounter++;
preorder.enqueue(v);
for (DirectedEdge e : G.adj(v))
{
int w = e.to();
if (!marked[w])
dfs(G, w);
}
postorder.enqueue(v);
post[v] = postCounter++;
} public int pre(int v)
{
return pre[v];
} public int post(int v)
{
return post[v];
} public Iterable<Integer> pre()
{
return preorder;
} public Iterable<Integer> post()
{
return postorder;
} public Iterable<Integer> reversePost() // 用后续队列生成逆后序栈
{
Stack<Integer> reverse = new Stack<Integer>();
for (int v : postorder)
reverse.push(v);
return reverse;
} public static void main(String[] args)
{
In in = new In(args[0]);
Digraph G = new Digraph(in);
class01 dfs = new class01(G);
StdOut.println(" v pre post");
StdOut.println("--------------");
for (int v = 0; v < G.V(); v++)
StdOut.printf("%4d %4d %4d\n", v, dfs.pre(v), dfs.post(v)); StdOut.print("Preorder: "); // 分别输出前序、后序和逆后序
for (int v : dfs.pre())
StdOut.print(v + " ");
StdOut.println(); StdOut.print("Postorder: ");
for (int v : dfs.post())
StdOut.print(v + " ");
StdOut.println(); StdOut.print("Reverse postorder: ");
for (int v : dfs.reversePost())
StdOut.print(v + " ");
StdOut.println();
}
}
● 传递闭包
package package01; import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Digraph;
import edu.princeton.cs.algs4.DirectedDFS; public class class01
{
private DirectedDFS[] tc; public class01(Digraph G)
{
tc = new DirectedDFS[G.V()];
for (int v = 0; v < G.V(); v++) // 循环尝试从所有点开始深度优先遍历整个图,返回可达点的迭代器
tc[v] = new DirectedDFS(G, v);
} public boolean reachable(int v, int w)
{
return tc[v].marked(w);
} public static void main(String[] args)
{
In in = new In(args[0]);
Digraph G = new Digraph(in);
class01 tc = new class01(G); StdOut.print(" ");
for (int v = 0; v < G.V(); v++)
StdOut.printf("%3d", v);
StdOut.println("\n--------------------------------------------"); for (int v = 0; v < G.V(); v++)
{
StdOut.printf("%3d: ", v);
for (int w = 0; w < G.V(); w++)
StdOut.printf(tc.reachable(v, w) ? " T" : " ");
StdOut.println();
}
}
}