题目描述

健佳正在制定下个假期去台湾的游玩计划。在这个假期,健佳将会在城市之间奔波,并且参观这些城市的景点。
在台湾共有n个城市,它们全部位于一条高速公路上。这些城市连续地编号为0到n-1。对于城市i(0<i<n-1)而言,与其相邻的城市是i-1和i+1。但是对于城市 0,唯一与其相邻的是城市 1。而对于城市n-1,唯一与其相邻的是城市n-2。
每个城市都有若干景点。健佳有d天假期并且打算要参观尽量多的景点。健佳已经选择了假期开始要到访的第一个城市。在假期的每一天,健佳可以选择去一个相邻的城市,或者参观所在城市的所有景点,但是不能同时进行。即使健佳在同一个城市停留多次,他也不会去重复参观该城市的景点。请帮助健佳策划这个假期,以便能让他参观尽可能多的景点。

题解

很容易发现,路线只有四种可能,一直往左走,一直往右走,先左走后右走,先右走后左走。

他能够游览的范围是一段区间,暴力的话就是枚举这段区间的左右端点,然后查一下区间前k大。

然后考虑优化,一直往左或往右这个可以直接扫描+主席树,不用优化。

后面两种情况本质相同,下面只讨论先左走后右走的情况。

假设我们有一堆询问,为先向左走到i这个点,再往右走到y这个点,当y为多少时最优。

结论,当i减小的时候,y是单调不增的。证明自己yy一下就差不多。

然后我们就可以solve(l,r,L,R)表示询问为l~r,答案区间为L~R,类似整体二分的做就可以了。

细节:又犯了SB错误,这个错误犯了好几次了,就是主席树查询到叶子节点时要

    if(l==r)return (tr[now]-tr[pre])/(cnt[now]-cnt[pre])*k; 

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#define N 100009
using namespace std;
typedef long long ll;
int b[N],a[N],tot,L[N*],R[N*],cnt[N*],s,d,n,top,T[N];
ll ans,tr[N*];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
inline void upd(int &now,int pre,int l,int r,int x){
now=++tot;L[now]=L[pre];R[now]=R[pre];tr[now]=tr[pre]+b[x];cnt[now]=cnt[pre]+;
if(l==r)return;
int mid=(l+r)>>;
if(mid>=x)upd(L[now],L[pre],l,mid,x);
else upd(R[now],R[pre],mid+,r,x);
}
inline ll query(int now,int pre,int l,int r,int k){
if(cnt[now]-cnt[pre]<=k)return tr[now]-tr[pre];
if(l==r)return (tr[now]-tr[pre])/(cnt[now]-cnt[pre])*k;
int mid=(l+r)>>,num=cnt[R[now]]-cnt[R[pre]];
if(num<k)return tr[R[now]]-tr[R[pre]]+query(L[now],L[pre],l,mid,k-num);
else return query(R[now],R[pre],mid+,r,k);
}
void solve1(int l,int r,int L,int R){
if(l>r)return;
int mid=(l+r)>>,id=L;ll num=;
for(int i=L;i<=R;++i){
int kk=i-mid+s-mid;if(i==s)kk=i-mid;
if(kk>d)continue;
ll x=query(T[i],T[mid-],,top,d-kk);
if(x>num)num=x,id=i,ans=max(ans,x);
}
solve1(l,mid-,L,id);solve1(mid+,r,id,R);
}
void solve2(int l,int r,int L,int R){
if(l>r)return;
int mid=(l+r)>>,id=R;ll num=;
for(int i=L;i<=R;++i){
int kk=mid-i+mid-s;if(i==s)kk=mid-i;
if(kk>d)continue;
ll x=query(T[mid],T[i-],,top,d-kk);
if(x>num)num=x,id=i,ans=max(ans,x);
}
solve2(l,mid-,L,id);solve2(mid+,r,id,R);
}
int main(){
n=rd();s=rd();d=rd();s++;
for(int i=;i<=n;++i)a[i]=rd(),b[i]=a[i];
sort(b+,b+n+);top=unique(b+,b+n+)-b-;
for(int i=;i<=n;++i){
a[i]=lower_bound(b+,b+top+,a[i])-b;
upd(T[i],T[i-],,top,a[i]);
}
solve1(,s,s,n);solve2(s,n,,s);
cout<<ans;
return ;
}
05-04 00:58