woodbury matrix identity

2014/6/20

【转载请注明出处】http://www.cnblogs.com/mashiqi

http://en.wikipedia.org/wiki/Woodbury_matrix_identity

Today I'm going to write down a proof of this Woodbury matrix identity, which is very important in some practical situation. For instance, the 40 equation of this paper" bayesian compressive sensing using Laplace priors" applied this identity. Now let me give the details of it.

The Woodbury matrix identity is:

${(A + UCV)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V{A^{ - 1}}$

where Woodbury matrix identity-LMLPHP, Woodbury matrix identity-LMLPHP, Woodbury matrix identity-LMLPHP and Woodbury matrix identity-LMLPHP are both assumed reversible.

Proof:

We denote Woodbury matrix identity-LMLPHP with Woodbury matrix identity-LMLPHP, namely Woodbury matrix identity-LMLPHP.So:

\[M{A^{ - 1}} = I + UCV{A^{ - 1}}\]

By multiply U with both side we get:

\[\begin{array}{l}
M{A^{ - 1}}U = U + UCV{A^{ - 1}}U = U(I + CV{A^{ - 1}}U)\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = UC({C^{ - 1}} + V{A^{ - 1}}U)
\end{array}\]

Woodbury matrix identity-LMLPHPWoodbury matrix identity-LMLPHPis reversible, Woodbury matrix identity-LMLPHPwe get:

Woodbury matrix identity-LMLPHP

But how could we deal with this nasty Woodbury matrix identity-LMLPHP term? We should notice that this term, which may not square, is coming from Woodbury matrix identity-LMLPHPitself, which is right a square and reversible matrix. So, from formula , we make up a pleasant Woodbury matrix identity-LMLPHP with is nasty Woodbury matrix identity-LMLPHP:

\[\begin{array}{l}
M{A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V + A = UCV + A = M\\
\Rightarrow M = M{A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V + A\\
\Rightarrow I - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V = {M^{ - 1}}A
\end{array}\]

And finally due to the reversibility of Woodbury matrix identity-LMLPHP, we get the Woodbury matrix identity:

\[{M^{ - 1}} = {(A + VCU)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V{A^{ - 1}}\]

Done.

We should notice that if Woodbury matrix identity-LMLPHP and Woodbury matrix identity-LMLPHP are identity matrix, then Woodbury matrix identity can be reduced to this form:

\[{(A + C)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\]

,which is equivalent to:

\[{(A + C)^{ - 1}} = {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\]

This is because:

\[\begin{array}{l}
{(A + C)^{ - 1}} = {A^{ - 1}} - ( - {C^{ - 1}} + {C^{ - 1}} + {A^{ - 1}}){({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {A^{ - 1}} + {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}} - ({C^{ - 1}} + {A^{ - 1}}){({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {A^{ - 1}} + {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}} - {A^{ - 1}}\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}
\end{array}\]

05-04 00:27