证据权法是通过计算和利用各种不同证据的权重(表示相对重要性)并将多种证据结合起来,预测某个时间是否会发生的一种方法
证据权法以概率论中的贝叶斯定理为基础。设D表示要一个随机事件。用P(D)表示这一事件概率,即D发生的概率。假设P(D)事先知道,即它是先验概率。则D不发生的概率为:
定义:
称为事件D的几率(Odd Ratio),也称优势率,它能更好的表示事件D发生的可能性大小。
用集合
表示与D有关的n个证据,并设X都是逻辑变量。用D|X表示"单元中存在X的情况下D发生"这一事件。用P(D|X)表示概率,也称为后验概率(后验概率是获得有关信息后对先验概率修正后的概率)。由贝叶斯定理:
可以得出优势率:
假设n个条件相互条件独立,并在两边同时去对数:
令:
于是:
事件D|X的几率为
于是后验概率为:
其中w称为证据X的证据权,反应X的存在对D的重要性:
其中,各条件概率的计算:
定义:
为X的对比系数,可以用来综合评价各证据的重要性
在数据较少的情况下,采用C来选择证据,回增大结果的不确定性,定义
其中:为第i个证据后验概率的正负方差:
- /// <summary>
- /// 计算先验似然概率
- /// </summary>
- private void GetMinePriorLikelihoodProb()
- {
- mineral_PriorProbability = sum_EvidenceCount[0] / (double)gridNumber;
- minreal_PriorLiklihoodProbablity = mineral_PriorProbability / (1 - mineral_PriorProbability);
- }
- /// <summary>
- /// 计算证据权参数
- /// </summary>
- private void GetEvidenceStatistc()
- {
- for (int i = 0; i < mineral_EvidenceCount - 1; i++)
- {
- //证据权正定义
- /* Count(BjD)/Count(D)
- * ln----------------------
- * Count(Bj~D)/Count(~D)
- */
- evidence_PosWeight[i] = Math.Log((sumEvidence_MineralOccur[i] / sum_EvidenceCount[0]) /
- ((sum_EvidenceCount[i + 1] - sumEvidence_MineralOccur[i]) / (gridNumber - sum_EvidenceCount[0])));
- //证据权负定义
- /* Count(~BjD)/Count(D)
- * ln-------------------------
- * Count(~Bj~D)/Count(~D)
- */
- evidence_NegWeight[i] = Math.Log(((sum_EvidenceCount[0] - sumEvidence_MineralOccur[i]) / (sum_EvidenceCount[0]))
- / ((gridNumber - sum_EvidenceCount[0] - sum_EvidenceCount[i + 1] + sumEvidence_MineralOccur[i]) / (gridNumber - sum_EvidenceCount[0])));
- //证据权正方差
- /* 1 1
- * -----------+--------------
- * Count(BjD) Count(Bj~D)
- */
- evidence_PosVariance[i] = (1 / sumEvidence_MineralOccur[i]) +
- (1 / (sum_EvidenceCount[i + 1] - sumEvidence_MineralOccur[i]));
- //证据权负方差
- /* 1 1
- * -----------+--------------
- * Count(~BjD) Count(~Bj~D)
- */
- evidence_NegVariance[i] = (1 / (sum_EvidenceCount[0] - sumEvidence_MineralOccur[i])) +
- (1 / (gridNumber - sum_EvidenceCount[0] - sum_EvidenceCount[i + 1] + sumEvidence_MineralOccur[i]));
- //对比度
- //Cj=weightj+ - Weightj-
- evidence_ContrastRatio[i] = evidence_PosWeight[i] - evidence_NegWeight[i];
- //显著性统计量
- //Stud(C)=Cj/s(c)
- //s(c)=1/Sqrt(s2(weight+)+s2(weight-))
- evidence_StatisticalSignficance[i] = evidence_ContrastRatio[i] /
- (Math.Sqrt(evidence_PosVariance[i] + evidence_NegVariance[i]));
- }
- }
- /// <summary>
- /// 证据权合成
- /// </summary>
- private void SynthesisEvidence()
- {
- double[] evidence_PostProbLog = new double[gridNumber];
- double[,] evidence_Data = (double[,])mineralAndEvidence.Clone();
- for (int i = 1; i < mineral_EvidenceCount; i++)
- {
- for (int j = 0; j < mineralAndEvidence.GetLength(1); j++)
- {
- //将复制证据图层中与对调
- if (evidence_Data[i, j] == 0)
- {
- evidence_Data[i, j] = 1;
- }
- else
- {
- evidence_Data[i, j] = 0;
- }
- evidence_PostProbLog[j] += evidence_Data[i, j] * evidence_NegWeight[i - 1] +
- mineralAndEvidence[i, j] * evidence_PosWeight[i - 1];
- }//for
- }//for
- GetPostProb(evidence_PostProbLog);
- }//Method End
- /// <summary>
- /// 计算后验概率
- /// </summary>
- /// <param name="postProbLog"></param>
- private void GetPostProb(double[] postProbLog)
- {
- evidence_PostProb = new double[gridNumber];
- for (int i = 0; i < postProbLog.Length; i++)
- {
- evidence_PostProb[i] = (Math.Exp(postProbLog[i] + Math.Log(minreal_PriorLiklihoodProbablity)))
- / (1 + Math.Exp(postProbLog[i] + Math.Log(minreal_PriorLiklihoodProbablity)));
- }//for
- }