上帝与集合的正确用法
题目描述
根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了 10^9 次元素,或 10^18 次,或者干脆∞次。
一句话题意:
$2^{2^{2^{...}}} \mod p$
输入输出格式
输入格式:
第一行一个整数 T ,表示数据个数。
接下来 T 行,每行一个正整数 p ,代表你需要取模的值
输出格式:
T 行,每行一个正整数,为答案对 p 取模后的值
输入输出样例
3
2
3
6
0
1
4
说明
对于100%的数据, $T\leq 1000 , p\leq 10^7$
分析:
一道扩展欧拉定理的题,实际上也比较接近于裸题了。但是有些细节要注意,而且有点卡常,另外空间有点小,一开始队列开大了然后MLE。。。。(好吧实际上是因为我用了线性筛,直接暴力求欧拉函数还会快些。。。)
Code:
#include<bits/stdc++.h>
using namespace std;
const int N=1e7+;
int T,n,phi[N],q[100];
bool vis[N];
inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''&&ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
}
void ready()
{
int top=,k;phi[]=;
for(int i=;i<N;i++){
if(!vis[i])phi[q[++top]=i]=i-;
for(int j=;j<=top&&(k=i*q[j])<N;j++){
vis[k]=true;
if(i%q[j])
phi[k]=phi[i]*(q[j]-);
else {
phi[k]=phi[i]*q[j];break;}
}
}
}
inline int mul(int x,int y,int mod)
{
int ret=;
while(y){
if(y&)ret=(ret+x)%mod;
y>>=;x=(x+x)%mod;}
return ret;
}
inline int power(int x,int y,int mod)
{
int ret=;
while(y){
if(y&)ret=mul(ret,x,mod)%mod;
y>>=;x=mul(x,x,mod)%mod;}
return ret;
}
inline int dfs(int x)
{
if(x==)return ;
return power(,dfs(phi[x])+phi[x],x);
}
int main()
{
T=read();ready();
while(T--){
n=read();
printf("%d\n",dfs(n));
}
return ;
}