Description

 
根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了10^9次元素,或10^18次,或者干脆∞次。
 
一句话题意:
BZOJ3884: 上帝与集合的正确用法  拓展欧拉定理-LMLPHP

Input

 
接下来T行,每行一个正整数p,代表你需要取模的值

Output

T行,每行一个正整数,为答案对p取模后的值

Sample Input

3
2
3
6

Sample Output

0
1
4

HINT

对于100%的数据,T<=1000,p<=10^7

Solution

并不会拓展欧拉定理,于是去学了一下,发现看不懂证明,所以偷了一个结论来用

BZOJ3884: 上帝与集合的正确用法  拓展欧拉定理-LMLPHP

这里用到了第三个结论

于是随便求求欧拉函数

递归下去求出答案就好了(套公式)

#include <bits/stdc++.h>

using namespace std ;

#define ll long long

int T,p ;

int power( int a , int b , int mod ) {
int ans = , base = a ;
while( b ) {
if( b& ) ans = 1ll * ans * base % mod ;
base = 1ll * base * base % mod ;
b >>= 1ll ;
}
return 1ll * ans % mod ;
} int phi( int n ) {
int m = sqrt( n ) , ans = n ;
for( int i = ; i <= m; i ++ )
if(n % i == ) {
ans = ans / i * ( i - ) ;
while( n % i == ) n /= i ;
}
if( n > ) ans = ans / n * ( n - ) ;
return ans ;
} int calc( int x ) {
if( x == ) return ;
int t = phi( x ) ;
return power( , calc( t ) + t , x ) ;
} int main() {
scanf( "%d" , &T ) ;
while(T--) {
scanf("%d" , &p) ;
printf("%d\n" , calc(p) ) ;
}
}
05-11 19:43