题意:给出n条线将一块区域分成n+1块空间,再给出m个点,询问这些点在哪个空间里。
思路:由于只要求相对位置关系,而对具体位置不关心,那么易使用叉积性质得到相对位置关系(左侧/右侧),再因为是简单几何线段不相较,即有序分布,那么在求在哪个区间时可以先对所有线段根据x坐标排序,使用二分减少复杂度。
/** @Date : 2017-07-11 11:05:59
* @FileName: POJ 2318 叉积性质.cpp
* @Platform: Windows
* @Author : Lweleth ([email protected])
* @Link : https://github.com/
* @Version : $Id$
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
//#include <bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; struct Point
{
int x, y;
Point(){}
Point(int xx, int yy){x = xx, y = yy;}
Point operator -(const Point &b) const
{
return Point(x - b.x, y - b.y);
}
int operator *(const Point &b) const
{
return x * b.x + y * b.y;
}
}; int cross(Point a, Point b)
{
return a.x * b.y - a.y * b.x;
} struct Line
{
Point s, t;
Line(){}
Line(Point ss, Point tt){s = ss, t = tt;}
}; int JudegeCross(Point p0, Point p1, Point p2)
{
return cross(p1 - p0, p2 - p0);
} Line li[N];
int ans[N];
int vis[N];
int cmp(Line a, Line b)
{
return a.s.x < b.s.x;
} int main()
{
int n, m, x1, x2, y1, y2;
while(~scanf("%d", &n) && n)
{
MMF(ans);
MMF(vis);
scanf("%d%d%d%d%d", &m, &x1, &y1, &x2, &y2);
for(int i = 0; i < n; i++)
{
int s, t;
scanf("%d%d", &s, &t);
li[i] = Line(Point(s, y1), Point(t, y2));
}
li[n] = Line(Point(x2, y1), Point(x2, y2));
sort(li, li + n + 1, cmp);
while(m--)
{
int x, y;
scanf("%d%d", &x, &y);
Point p = Point(x, y);
int l = 0, r = n;
int pos = 0;
while(l <= r)
{
int mid = (l + r) >> 1;
if(JudegeCross(p, li[mid].s, li[mid].t) < 0)
{
pos = mid;
r = mid - 1;
}
else
l = mid + 1;
}
ans[pos]++;
}
printf("Box\n");
for(int i = 0; i <= n; i++)
if(ans[i])
vis[ans[i]]++;
for(int i = 1; i <= n; i++)
if(vis[i])
printf("%d: %d\n", i, vis[i]);
}
return 0;
}
/** @Date : 2017-07-11 11:05:59
* @FileName: POJ 2318 叉积性质.cpp
* @Platform: Windows
* @Author : Lweleth ([email protected])
* @Link : https://github.com/
* @Version : $Id$
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
//#include <bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; struct Point
{
int x, y;
Point(){}
Point(int xx, int yy){x = xx, y = yy;}
Point operator -(const Point &b) const
{
return Point(x - b.x, y - b.y);
}
int operator *(const Point &b) const
{
return x * b.x + y * b.y;
}
}; int cross(Point a, Point b)
{
return a.x * b.y - a.y * b.x;
} struct Line
{
Point s, t;
Line(){}
Line(Point ss, Point tt){s = ss, t = tt;}
}; int JudegeCross(Point p0, Point p1, Point p2)
{
return cross(p1 - p0, p2 - p0);
} Line li[N];
int ans[N]; int main()
{
int n, m, x1, x2, y1, y2;
while(~scanf("%d", &n) && n)
{
MMF(ans);
scanf("%d%d%d%d%d", &m, &x1, &y1, &x2, &y2);
for(int i = 0; i < n; i++)
{
int s, t;
scanf("%d%d", &s, &t);
li[i] = Line(Point(s, y1), Point(t, y2));
}
li[n] = Line(Point(x2, y1), Point(x2, y2));
while(m--)
{
int x, y;
scanf("%d%d", &x, &y);
Point p = Point(x, y);
int l = 0, r = n;
int pos = 0;
while(l <= r)
{
int mid = (l + r) >> 1;
if(JudegeCross(p, li[mid].s, li[mid].t) < 0)
{
pos = mid;
r = mid - 1;
}
else
l = mid + 1;
}
ans[pos]++;
}
for(int i = 0; i <= n; i++)
{
printf("%d: %d\n", i, ans[i]);
}
printf("\n");
}
return 0;
}