链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3587
题意:给出两个字符串S和T。S,T<=100000.拿出S的两个子串(能够重叠),将两个子串连接起来成为字符串T的方法有多少种。
思路:用扩展KMP求出S的从每位開始的子串与T的公共前缀,再将两个子串翻转,再用扩展KMP求出S反的从每位開始的子串与T反的公共前缀。找出当中和为T子串长度的S公共前缀和S反的公共前缀的数量,相乘为结果。
代码:
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <ctype.h>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
#define eps 1e-8
#define INF 0x7fffffff
#define maxn 10005
#define PI acos(-1.0)
#define seed 31//131,1313
typedef long long LL;
typedef unsigned long long ULL;
using namespace std;
const int N = 101010;
int next_a[N],extand_a[N],next_c[N],extand_c[N];
void getnext(char *T,int *next,int *extand) // next[i]: 以第i位置開始的子串 与 T的公共前缀
{
int i,length = strlen(T);
next[0] = length;
for(i = 0; i<length-1 && T[i]==T[i+1]; i++);
next[1] = i;
int a = 1;
for(int k = 2; k < length; k++)
{
int p = a+next[a]-1, L = next[k-a];
if( (k-1)+L >= p )
{
int j = (p-k+1)>0? (p-k+1) : 0;
while(k+j<length && T[k+j]==T[j]) j++;// 枚举(p+1,length) 与(p-k+1,length) 区间比較
next[k] = j, a = k;
}
else next[k] = L;
}
}
void getextand(char *S,char *T,int *next,int *extand) //s是母串,t是模式串
{
memset(next,0,sizeof(next));
getnext(T,next,extand);
int Slen = strlen(S), Tlen = strlen(T), a = 0;
int MinLen = Slen>Tlen? Tlen:Slen;
while(a<MinLen && S[a]==T[a]) a++;
extand[0] = a, a = 0;
for(int k = 1; k < Slen; k++)
{
int p = a+extand[a]-1, L = next[k-a];
if( (k-1)+L >= p )
{
int j = (p-k+1)>0? (p-k+1) : 0;
while(k+j<Slen && j<Tlen && S[k+j]==T[j] ) j++;
extand[k] = j;
a = k;
}
else extand[k] = L;
}
}
char a[100005],b[100005],c[100005],d[100005];
LL t_a[100005],t_c[100005];
void init()
{
memset(t_a,0,sizeof(t_a));
memset(t_c,0,sizeof(t_c));
}
int main()
{
//freopen("1.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--)
{
init();
scanf("%s",a);
scanf("%s",b);
int len_a=strlen(a);
for(int i=0;i<len_a;i++)
c[i]=a[len_a-1-i];
c[len_a]='\0';
int len_b=strlen(b);
for(int i=0;i<len_b;i++)
d[i]=b[len_b-1-i];
d[len_b]='\0';
getextand(a,b,next_a,extand_a);
getextand(c,d,next_c,extand_c);
for(int i=0;i<len_a;i++)
{
t_a[extand_a[i]]++;
t_c[extand_c[i]]++;
}
for(int i=len_a-1;i>=1;i--)
{
t_a[i]+=t_a[i+1];
t_c[i]+=t_c[i+1];
}
LL ans=0;
for(int i=1;i<len_b;i++)
{
ans+=t_a[i]*t_c[len_b-i];
}
printf("%lld\n",ans);
}
return 0;
}