https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1242

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
51Nod——T 1242 斐波那契数列的第N项-LMLPHP 收藏
51Nod——T 1242 斐波那契数列的第N项-LMLPHP 关注
斐波那契数列的定义如下:
 
F(0) = 0
F(1) = 1
F(n) = F(n - 1) + F(n - 2) (n >= 2)
 
(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可。
 
Input
输入1个数n(1 <= n <= 10^18)。
Output
输出F(n) % 1000000009的结果。
Input示例
11
Output示例
89
 #include <cstdio>

 const int mod();
#define LL long long
inline void read(LL &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
LL n; struct Matrix {
LL e[][];
Matrix operator * (const Matrix x) const
{
Matrix tmp;
for(int i=; i<; ++i)
for(int j=; j<; ++j)
{
tmp.e[i][j]=;
for(int k=; k<; ++k)
tmp.e[i][j]+=e[i][k]*x.e[k][j],tmp.e[i][j]%=mod;
}
return tmp;
}
}ans,base; int Presist()
{
read(n);
ans.e[][]=ans.e[][]=;
base.e[][]=base.e[][]=base.e[][]=;
for(; n; n>>=, base=base*base)
if(n&) ans=ans*base;
printf("%lld",ans.e[][]);
return ;
} int Aptal=Presist();
int main(){;}
05-11 17:23