find the mincost route

Time Limit: 1000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3456    Accepted Submission(s): 1409

Problem Description

州有N个景区,景区之间有一些双向的路来连接,现在8600想找一条旅游路线,这个路线从A点出发并且最后回到A点,假设经过的路线为
V1,V2,....VK,V1,那么必须满足K>2,就是说至除了出发点以外至少要经过2个其他不同的景区,而且不能重复经过同一个景区。现在
8600需要你帮他找一条这样的路线,并且花费越少越好。
 
Input
第一行是2个整数N和M(N <= 100, M <= 1000),代表景区的个数和道路的条数。
接下来的M行里,每行包括3个整数a,b,c.代表a和b之间有一条通路,并且需要花费c元(c <= 100)。
 
Output
对于每个测试实例,如果能找到这样一条路线的话,输出花费的最小值。如果找不到的话,输出"It's impossible.".
 
Sample Input
3 3
1 2 1
2 3 1
1 3 1
3 3
1 2 1
1 2 3
2 3 1
 
Sample Output
3
It's impossible.
 
Author
8600
 
Source
 
Recommend
8600   |   We have carefully selected several similar problems for you:  1142 1217 1597 1301 1054 
 本题的题意时汉文,所以翻译就不用嗦说了,大家看看那就知道了,本题求得时给出若个双向图的路径,问你是否具有最短的环,如果有,便输出他的最小长度的,如果没有就输出impossibl
本题如果用dfs进行搜索的话会超时,所以尽量不压迫使用dfs进行搜需,之前在别的oj里见过一个累世的题目,那个题目求得也是最短路径的环但是徐娅萍输出路径,那个提我用dfs过了,但是这道题却过不去,
所以还是只能用floyd做了
下面的代码可以当做末班时用
#include<cstdio>
#include<cstring>
#define find_min(a,b) a<b?a:b const int N = ;
const int INF = 0x7ffffff;
int mat[N][N],dist[N][N],pre[N][N],path[N],n; int main()
{
int i,j,k,m,a,b,c;
int num; while(~scanf("%d%d",&n,&m)){
for(i=;i<=n;i++){
for(j=;j<=n;j++){
mat[i][j]=dist[i][j]=INF;
pre[i][j]=i;
}
}
while(m--){
scanf("%d%d%d",&a,&b,&c);
mat[a][b]=mat[b][a]=dist[a][b]=dist[b][a]=find_min(mat[a][b],c);
} int min=INF;
for(k=;k<=n;k++){//最短路径外一点将最短路首尾链接,那么就得到一个最小环
for(i=;i<k;i++){
for(j=i+;j<k;j++){
//求最小环不能用两点间最短路松弛,因为(i,k)之间的最短路,(k,j)之间的最短路可能有重合的部分
//所以mat[][]其实是不更新的,这里和单纯的floyd最短路不一样
//dist[i][j]保存的是 i 到 j 的最短路权值和
int tmp=dist[i][j]+mat[i][k]+mat[k][j];//这里 k 分别和 i 还有 j 在mat中直接相连
if(tmp<min){
min=tmp;
num=;
int p=j;
while(p!=i){//回溯
path[num++]=p;
p=pre[i][p];//pre[i][j]表示 i 到 j 最短路径上 j 前面的一个点
}
path[num++]=i;
path[num++]=k;
}
}
}
for(i=;i<=n;i++){
for(j=;j<=n;j++){
if(dist[i][j]>dist[i][k]+dist[k][j]){
dist[i][j]=dist[i][k]+dist[k][j];//dist[][]保存两点间最短距离
pre[i][j]=pre[k][j];
}
}
}
}
if(min==INF)puts("It's impossible.");
else{
printf("%d\n",min);
}
}
return ;
}
05-02 10:00