【BZOJ1009】[HNOI2008]GT考试
Description
阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0
Input
第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000
Output
阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.
Sample Input
4 3 100
111
111
Sample Output
81
题解:虽然AC自动机的fail和KMP的next只差了那么一点点,但为什么感觉AC自动机比KMP好理解100倍~
好吧我们还是用KMP,先求出next数组,然后用f[i][j]表示i位数,第i位数匹配到了模板串的第j位时的方案数
然后从0..9枚举第i+1位,设加入了第i+1位后匹配到了位置k,则有f[i+1][k]+=f[i][j]
若第i位正好匹配成功,此时k=m,则f[i+1][m]+=f[i][j]
显然我们可以用矩乘来优化这个DP过程,我们令x[i][j]表示经过1次匹配后,从位置i匹配到了位置j的方案数。那么对于上面所有符合条件的(j,k),我们都令x[j][k]=1,初始ans[0][0]=1。然后ans*=x^N,答案就是∑ans[0][0...m-1]
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int next[25];
char str[25];
typedef struct matrix
{
int v[25][25];
}M;
M x,ans,emp;
int n,m,mod,sum;
M mmul(M a,M b)
{
M c=emp;
int i,j,k;
for(i=0;i<=m;i++)
for(j=0;j<=m;j++)
for(k=0;k<=m;k++)
c.v[i][j]=(c.v[i][j]+a.v[i][k]*b.v[k][j])%mod;
return c;
}
void pm(int y)
{
while(y)
{
if(y&1) ans=mmul(ans,x);
x=mmul(x,x),y>>=1;
}
}
int main()
{
scanf("%d%d%d%s",&n,&m,&mod,str);
int i=0,j=-1,k;
next[0]=-1;
while(i<m-1)
{
if(j==-1||str[i]==str[j]) next[++i]=++j;
else j=next[j];
}
for(i=0;i<m;i++)
{
for(j=0;j<=9;j++)
{
k=i;
while(k!=-1&&str[k]-'0'!=j) k=next[k];
x.v[i][k+1]++;
}
}
x.v[m][m]=10,ans.v[0][0]=1;
pm(n);
for(i=0;i<m;i++) sum=(sum+ans.v[0][i])%mod;
printf("%d",sum);
return 0;
}