图片数据:卷积还是王道,有几个比较通用性的框架被人拿来改来改去

非图片特征数据:用分类:

boost系列算法:牛逼的框架实现 xgboost

AdaBoost算法针对不同的训练集训练同一个基本分类器(弱分类器),然后把这些在不同训练集上得到的分类器集合起来,构成一个更强的最终的分类器(强分类器)。理论证明,只要每个弱分类器分类能力比随机猜测要好,当其个数趋向于无穷个数时,强分类器的错误率将趋向于零。AdaBoost算法中不同的训练集是通过调整每个样本对应的权重实现的。最开始的时候,每个样本对应的权重是相同的,在此样本分布下训练出一个基本分类器h(x)。对于h(x)错分的样本,则增加其对应样本的权重;而对于正确分类的样本,则降低其权重。这样可以使得错分的样本突出出来,并得到一个新的样本分布。同时,根据错分的情况赋予h(x)一个权重,表示该基本分类器的重要程度,错分得越少权重越大。在新的样本分布下,再次对基本分类器进行训练,得到基本分类器h(x)及其权重。依次类推,经过T次这样的循环,就得到了T个基本分类器,以及T个对应的权重。最后把这T个基本分类器按一定权重累加起来,就得到了最终所期望的强分类器。

XGBoost, ExtraTrees, GradientBoost, and RandomForest classifiers

kaggle 里面的cv 是交叉验证的意思

05-07 15:34