第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为【算法】第二类斯特林数Stirling-LMLPHP 或者【算法】第二类斯特林数Stirling-LMLPHP 。

第二类Stirling数的推导和第一类Stirling数类似,可以从定义出发考虑第n+1个元素的情况,假设要把n+1个元素分成m个集合则分析如下:
(1)如果n个元素构成了m-1个集合,那么第n+1个元素单独构成一个集合。方案数【算法】第二类斯特林数Stirling-LMLPHP 。
(2)如果n个元素已经构成了m个集合,将第n+1个元素插入到任意一个集合。方案数 m*S(n,m) 。
 
综合两种情况得:

【算法】第二类斯特林数Stirling-LMLPHP
 
 
递推式:dp[i][j] = dp[i-1][j-1]+j*dp[i-1][j];
 
 
 
模板代码:
      dp[][] = ;
for(int i = ;i <= n; i++){
for(int j = ;j <= i; j++){
dp[i][j] = dp[i-][j-]+j*dp[i-][j];
}
}
n=01
n=10 1
n=20 1 1
n=3
0 1 3 1
n=4
0 1 7 6 1
n=5
0 1 15 25 10 1
n=6
0 1 31 90 65 15 1
n=7
0 1 63 301 350 140 21 1
n=8
0 1 127 966 1701 1050 266 28 1
n=9
0 1 255 3025 7770 6951 2646 462 36 1
 
05-11 22:10