题意:

  给你一张二分图,给一个原匹配,求原匹配改动最少的边数使其边权和最大。

SOL:

  我觉得我的智商还是去搞搞文化课吧。。这种题给我独立做我大概只能在暴力优化上下功夫。。

  这题的处理方法让我想到了剩余系。。貌似就是它。。

  我们将每条边的边权扩大n+1倍——是不是有点雾,同时将原匹配边的边权再加1.

  非常玄学!这样做有什么道理呢?它保证了最优匹配在这样更改后仍是最优的!我们假设次优解比最优解只小1,在乘上n+1后差距被放大到n+1,即使次优解全由原匹配边组成,加上n仍小于最优解,那么我们就一定能求出最优解。同时我们注意到每一条边的边权均为n+1的倍数,而原匹配边的边权为n+1的倍数加1,那么我们就能很方便地求出当前解中有多少原匹配边。

  如果原图有多个最优解,那么我们能肯定拥有原匹配边最多的解在乘上n+1后边权最大——毕竟人家加了1嘛。

  很巧妙的剩余系转化与运用啊。。数学渣确实已经没救了。

/*==========================================================================
# Last modified: 2016-02-19 13:00
# Filename: hdu2853.cpp
# Description:
==========================================================================*/
#define me AcrossTheSky
#include <cstdio>
#include <cmath>
#include <ctime>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#define lowbit(x) (x)&(-x)
#define INF 1070000000
#define FOR(i,a,b) for((i)=(a);(i)<=(b);(i)++)
#define FORP(i,a,b) for(int i=(a);i<=(b);i++)
#define FORM(i,a,b) for(int i=(a);i>=(b);i--)
#define ls(a,b) (((a)+(b)) << 1)
#define rs(a,b) (((a)+(b)) >> 1)
#define maxn 100
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
/*==================split line==================*/
int n,m;
int slack[maxn],lx[maxn],ly[maxn],w[maxn][maxn],link[maxn];
bool S[maxn],T[maxn];
int Ans;
bool match(int i){
S[i]=true;
FORP(j,1,m)
if (!T[j]){
int tmp=lx[i]+ly[j]-w[i][j];
if (tmp==0){
T[j]=true;
if (!link[j] || match(link[j])){
link[j]=i;
return true;
}
}
else slack[j]=min(slack[j],tmp);
}
return false;
}
void updata(){
int a=INF;
FORP(i,1,m) if (!T[i]) a=min(a,slack[i]);
FORP(i,1,n) if (S[i]) lx[i]-=a;
FORP(i,1,m)
if (T[i]) ly[i]+=a;
else slack[i]-=a;
}
void KM(){
memset(lx,0,sizeof(lx));
memset(link,0,sizeof(link));
memset(ly,0,sizeof(ly));
FORP(i,1,n)
FORP(j,1,m) lx[i]=max(lx[i],w[i][j]);
FORP(i,1,n){
memset(slack,0x7f,sizeof(slack));
while (true){
memset(S,false,sizeof(S));
memset(T,false,sizeof(T));
if (match(i)) break;
else updata();
}
}
int ans=0;
FORP(i,1,m) if (link[i]) ans+=w[link[i]][i];
printf("%d %d\n",n-ans%(n+1),ans/(n+1)-Ans/(n+1));
}
int main(){
freopen("a.in","r",stdin);
while (scanf("%d%d",&n,&m)!=EOF){
Ans=0;
FORP(i,1,n)
FORP(j,1,m) {
int x;
scanf("%d",&x);
w[i][j]=x*(n+1);
}
FORP(i,1,n) {int x; scanf("%d",&x); Ans+=w[i][x]; w[i][x]++;}
KM();
}
}
05-02 03:18