多个Mapper和Reducer的Job

@(Hadoop)


对于复杂的mr任务来说,只有一个map和reduce往往是不能够满足任务需求的,有可能是需要n个map之后进行reduce,reduce之后又要进行m个map。

在hadoop的mr编程中可以使用ChainMapper和ChainReducer来实现链式的Map-Reduce任务。

ChainMapper

以下为官方API文档翻译:

ChainMapper类允许在单一的Map任务中使用多个Mapper来执行任务,这些Mapper将会以链式或者管道的形式来调用。

第一个Mapper的输出即为第二个Mapper的输入,以此类推,直到最后一个Mapper则为任务的输出。

这个特性的关键功能在于,在链中的Mappers不必知道他们是否已经被执行,这可以在一个单一的任务中让一些Mapper进行重用,组合在一起完成复杂的操作。

使用的时候需要注意,每个Mapper的输出都会在下一个Mapper的输入中进行验证,这里假设所有的Mapper和Reduce都使用相匹配的key和value作为输入和输出,因为在链式执行的代码中并没有对其进行转换。

使用ChainMapper和ChainReducer可以将Map-Reduce任务组合成[MAP+ / REDUCE MAP*]的形式,这个模式最直接的好处就是可以大大减少磁盘的IO开销。

注意:没有必要为ChainMapper指定输出的key和value的类型,使用addMapper方法添加最后一个Mapper的时候回自动完成。

使用的格式:

Job = new Job(conf);
//mapA的配置,如果不是特殊配置可传入null或者共用一个conf
Configuration mapAConf = new Configuration(false);
//将Mapper加入执行链中
ChainMapper.addMapper(job, AMap.class, LongWritable.class, Text.class,
Text.class, Text.class, true, mapAConf);
Configuration mapBConf = new Configuration(false);
ChainMapper.addMapper(job, BMap.class, Text.class, Text.class,
LongWritable.class, Text.class, false, mapBConf); job.waitForComplettion(true);

addMapper函数的定义如下:

public static void addMapper(Job job,
Class<? extends Mapper> klass,
Class<?> inputKeyClass,
Class<?> inputValueClass,
Class<?> outputKeyClass,
Class<?> outputValueClass,
Configuration mapperConf)
throws IOException

ChainReducer

基本描述同ChainMapper。

对于每条reduce输出的数据,Mappers将会以链或者管道的形式调用。 ?

ChainReducer有两个基本函数可以调用,使用格式:

Job = new Job(conf);
Configuration reduceConf = new Configuration(false);
//这里是在setReducer之后才调用addMapper
ChainReducer.setReducer(job, XReduce.class, LongWritable.class, Text.class,
Text.class, Text.class, true, reduceConf);
ChainReducer.addMapper(job, CMap.class, Text.class, Text.class,
LongWritable.class, Text.class, false, null);
ChainReducer.addMapper(job, DMap.class, LongWritable.class, Text.class,
LongWritable.class, LongWritable.class, true, null);
job.waitForCompletion(true);

setReducer定义:

public static void setReducer(Job job,
Class<? extends Reducer> klass,
Class<?> inputKeyClass,
Class<?> inputValueClass,
Class<?> outputKeyClass,
Class<?> outputValueClass,
Configuration reducerConf)

addMapper定义同ChainMapper。

实际的测试过程

在demo程序测试中观察结果得到两条比较有用的结论:

**另注:**reduce之前设置多个Mapper使用ChainMapper的addMapper,reduce之后设置多个Mapper使用ChainReducer的addMapper。

多个job连续运行

有时候链式的设置多个Mapper仍然无法满足需求,例如,有时候我们需要多个reduce过程,或者map之后的分组排序等,这就需要多个job协同进行工作。

使用的方法很简单,直接在第一个job.waitForCompletion之后再次实例化一个Job对象,按照八股文的格式进行设置即可,注意输入和输出的路径信息。

example:

Job newJob = Job.getInstance(conf, jobName + "-sort");
newJob.setJarByClass(jarClass); FileInputFormat.setInputPaths(newJob, new Path(outPath + "/part-*"));
newJob.setInputFormatClass(TextInputFormat.class); newJob.setMapperClass(SortMapper.class);
newJob.setMapOutputKeyClass(SortKey.class);
newJob.setMapOutputValueClass(NullWritable.class); FileOutputFormat.setOutputPath(newJob, new Path(outPath + "/sort"));
newJob.setOutputFormatClass(TextOutputFormat.class); newJob.waitForCompletion(true);

作者:@小黑

05-02 02:58