RT-DETR算法优化改进:Backbone改进 | EMO,结合 CNN 和 Transformer 的现代倒残差移动模块设计 | ICCV2023
2023 腾讯优图/浙大/北大提出:重新思考高效神经模型的移动模块 重新思考了 MobileNetv2 中高效的倒残差模块 Inverted Residual Block 和 ViT 中的有效 Transformer 的本质统一,归纳抽象了 MetaMobile Block 的一般概念。受这种现象的启发,作者设计了一种面向移动端应用的简单而高效的现代...
Transformers 中原生支持的量化方案概述
本文旨在对 transformers 支持的各种量化方案及其优缺点作一个清晰的概述,以助于读者进行方案选择。目前,量化模型有两个主要的用途: 在较小的设备上进行大模型推理对量化模型进行适配器微调 到目前为止,transformers 已经集成并 原生 支持了 bitsandbytes 和 auto-gptq 这两个量化库。请注意,🤗 optimum 还支持更多的量化方案,但本文不会涉及这一块内容。要详细了解每种方...
BERT:来自 Transformers 的双向编码器表示 – 释放深度上下文化词嵌入的力量
BERT是Transformers 双向编码器表示的缩写,是 2018 年推出的改变游戏规则的 NLP 模型之一。BERT 的情感分类、文本摘要和问答功能使其看起来像是一站式 NLP 模型。尽管更新和更大的语言模型已经出现,但 BERT 仍然具有相关性,并且值得学习它的架构、方法和功能。 这篇综合文章深入探讨了 BERT 及其对自然语言处理和理解的重大影响。我们将介绍使其在 NLP 社区中脱颖而出的基本概念、运行机制...
破解密码 LLM(代码LLM如何从 RNN 发展到 Transformer)
一、说明 近年来,随着 Transformer 的引入,语言模型发生了显着的演变,它彻底改变了我们执行日常任务的方式,例如编写电子邮件、创建文档、搜索网络甚至编码方式。随着研究人员在代码智能任务中应用大型语言模型,神经代码智能的新领域已经出现。该领域旨在通过解决代码摘要、生成和翻译等任务来提高编程效率并最大限度地减少软件行业中的人为错误。 随着 Code Llama 的最新版本(Met...
第86步 时间序列建模实战:Transformer回归建模
基于WIN10的64位系统演示 一、写在前面 这一期,我们介绍Transformer回归。 同样,这里使用这个数据: 《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China》文...
(StackOverflow)使用Huggingface Transformers从磁盘加载预训练模型
这是在Stack Overflow上的一个问答,链接如下: Load a pre-trained model from disk with Huggingface Transformers - Stack Overflowhttps://stackoverflow.com/questions/64001128/load-a-pre-trained-model-from-disk-with-huggingface-tra...
HuggingFace Transformers教程(1)--使用AutoClass加载预训练实例
知识的搬运工又来啦 ☆*: .。. o(≧▽≦)o .。.:*☆ 【传送门==>原文链接:】https://huggingface.co/docs/transformers/autoclass_tutorial 🚗🚓🚕🛺🚙🛻🚌🚐🚎🚑🚒🚚🚛🚜🚘🚔🚖🚍🚗🚓🚕🛺🚙🛻🚌🚐🚎🚑🚒🚚 由于存在许多不同的Transformer架构,因此为您的检查点(checkpoint)创建一个可能很具有挑战性。作为🤗Transformers核...
用 Pytorch 自己构建一个Transformer
一、说明 用pytorch自己构建一个transformer并不是难事,本篇使用pytorch随机生成五千个32位数的词向量做为源语言词表,再生成五千个32位数的词向量做为目标语言词表,让它们模拟翻译过程,transformer全部用pytorch实现,具备一定实战意义。 二、论文和概要 在本教程中,我们将使用 PyTorch 从头开始构建一个基本的转换器模型。Vaswani等人在论文...
Transformer在小目标检测上的应用
Transformer在小目标检测上的应用 目录 1 小目标检测介绍 2 引入transformer 3 用于小目标检测的Transformer 4 基于Transformer的端到端目标检测算法 4.1 DETR(ECCV2020) 4.2 Pix2seq(谷歌Hinton) 4.3 稀疏注意力Deformable DETR(ICLR 2021) 1 小目标检测介绍 小目标检测(Small Obje...
chatgpt技术总结(包括transformer,注意力机制,迁移学习,Ray,TensorFlow,Pytorch)
,也正因如此,旧有技术的可用性,让各大厂嗅到了快速发展的商机,纷纷跑步入场。 首先我们要了解chatgpt是一种自然语言处理模型,也可以理解为文本生成模型。在框架上chatgpt采用了transformer框架,这种框架又被称作变形金刚,因为相对于CNN只能处理空间信息,像图像处理,目标检测等。RNN只能处理时序信息,像语音处理,文本生成等,transformer对空间信息和时序信息皆可处理,而且在时序...