【野生动物识别系统】Python+深度学习+人工智能+卷积神经网络算法+TensorFlow+ResNet+图像识别
一、介绍 动物识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对18种动物数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张动物图片识别其名称。目前可识别的动物有:‘乌龟’, ‘云豹’, ‘变色龙’, ‘壁虎’, ‘狞猫’, ‘狮子’, ‘猎豹’, ‘美洲狮’, ‘美洲虎’, ‘老...
tensorflow案例5--基于改进VGG16模型的马铃薯识别,准确率提升0.6%,计算量降低78.07%
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 前言 本次采用VGG16模型进行预测,准确率达到了98.875,但是修改VGG16网络结构, 准确率达到了0.9969,并且计算量下降78.07% 1、API积累 VGG16简介 VGG优缺点分析: VGG优点 VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。 VGG缺点 1)训练...
【手势识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+机器学习+Django网页界面+算法模型
一、介绍 手势识别系统,使用Python作为主要编程语言,通过收集了10种手势图片数据集(0~9),然后基于TensorFlow搭建卷积神经网络算法模型,然后训练模型得到一个识别精度较高的模型文件,在基于Django搭建网页端操作界面平台,实现用户上传一张图片识别其名称。 二、系统效果图片展示 三、演示视频 and 完整代码 and 安装 地址:https://www.yuque.com/ziwu/...
Springboot 整合 Java DL4J 打造自然语言处理之语音识别系统
Springboot 整合 Java DL4J 打造自然语言处理 之 语音识别系统 引言 在当今数字化时代,语音识别技术正变得越来越重要。从智能手机中的语音助手到智能家居设备的语音控制,语音识别为人们提供了一种更加便捷、自然的人机交互方式。语音识别系统本质上是将语音信号转换为计算机能够理解和处理的文本形式。这一过程涉及到多个复杂的技术环节,包括音频信号处理、特征提取以及基于神经网络的模型训练等。 传...
Qt中实现高准确率的语音识别
选择语音识别引擎 开源语音识别项目中,以下两款工具可以用于支持中英文识别,并且与Qt兼容: Vosk:Vosk是一个开源的语音识别工具,支持中英文及多种语言,具备离线识别能力,且不依赖互联网。 PaddleSpeech:PaddleSpeech是百度的开源语音识别工具,准确率较高,但需要稍微多一点的配置。 本示例将使用 Vosk,它支持多平台,且易于集成到C++项目中,满足离线使用、90%以上准确率...
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
一、介绍 车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。 二、系统效果图片展示 三、演示视频 and 完整代码 and 安装 地址:https://www.yuque.com/ziw...
探索开源语音识别的未来:高效利用先进的自动语音识别技术20241030
🚀 探索开源语音识别的未来:高效利用自动语音识别技术 🌟 引言 在数字化时代,语音识别技术正在引领人机交互的新潮流,为各行业带来了颠覆性的改变。开源的自动语音识别(ASR)系统,如 Whisper,凭借其卓越的多语言支持和高准确性,成为众多开发者的首选工具。本文将深入探讨 Whisper 的核心功能、实际应用以及最佳实践,帮助开发者更好地掌握这项强大技术。 1️⃣ Whisper 概述 1.1 开源...
【果蔬识别】Python+卷积神经网络算法+深度学习+人工智能+机器学习+TensorFlow+计算机课设项目+算法模型
一、介绍 果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜(‘土豆’, ‘圣女果’, ‘大白菜’, ‘大葱’, ‘梨’, ‘胡萝卜’, ‘芒果’, ‘苹果’, ‘西红柿’, ‘韭菜’, ‘香蕉’, ‘黄瓜’),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方...
基于ResNet50模型的船型识别与分类系统研究
-----》 项目名称 1.【LSTM模型实现光伏发电功率的预测】 2.【卫星图像道路检测DeepLabV3Plus模型】 3.【GAN模型实现二次元头像生成】 4.【CNN模型实现mnist手写数字识别】 5.【fasterRCNN模型实现飞机类目标检测】 6.【CNN-LSTM住宅用电量预测】 7.【VGG16模型实现新冠肺炎图片多分类】 8.【AlexNet模型实现鸟类识别】 9.【DIN模型实...
【动植物毒性数据集】毒蛇识别 蘑菇毒性分类 人工智能 深度学习 目标检测 Python(含数据集)
一、背景意义 随着人们对生态保护和环境健康的关注加剧,有毒动植物的识别和分类变得尤为重要。这些动植物不仅对人类健康构成威胁,还可能对生态系统的平衡造成影响。随着人工智能和深度学习技术的发展,利用计算机视觉技术对有毒动植物进行自动识别,能够大幅提高识别的效率和准确性。数据集包含多种有毒动植物的名称。该数据集的多样性使其成为训练深度学习模型的理想选择。通过深度学习算法,尤其是卷积神经网络(C...