YoloV8改进策略:Block改进|细节增强注意力模块(DEAB)|即插即用

文章目录 摘要 一、论文介绍 二、创新点 三、方法 四、模块作用 五、改进的效果(以YoloV8为例) 论文翻译:《DEA-Net:基于细节增强卷积和内容引导注意力的单幅图像去雾》 I 引言 II. 相关工作 III 方法论 IV 实验 V 结论 需要安装的库 代码 改进方法 测试结果 总结 摘要 一、论文介绍 DEA-Net的提出背景:单幅图像去雾是一项具有挑战性的任务,旨在从观测到的雾图中恢复出潜在...

Yolo11改进策略:Head改进|DynamicHead,利用注意力机制统一目标检测头部|即插即用

摘要 论文介绍 本文介绍了一种名为DynamicHead的模块,该模块旨在通过注意力机制统一目标检测头部,以提升目标检测的性能。论文详细阐述了DynamicHead的工作原理,并通过实验证明了其在COCO基准测试上的有效性和效率。 创新点 DynamicHead模块的创新之处在于它首次尝试在一个统一的框架中结合了尺度感知、空间感知和任务感知的注意力机制。这三个注意力机制分别作用于特征张量的不同维度上,但...

YoloV8改进策略:BackBone改进|CAFormer在YoloV8中的创新应用,显著提升目标检测性能

摘要 在目标检测领域,模型性能的提升一直是研究者和开发者们关注的重点。近期,我们尝试将CAFormer模块引入YoloV8模型中,以替换其原有的主干网络,这一创新性的改进带来了显著的性能提升。 CAFormer,作为MetaFormer框架下的一个变体,结合了深度可分离卷积和普通自注意力机制的优势。在底层阶段,CAFormer采用深度可分离卷积作为令牌混合器,有效降低了计算复杂度并保持了良好的性能;而在...

YoloV9改进策略:BackBone改进|CAFormer在YoloV9中的创新应用,显著提升目标检测性能

摘要 在目标检测领域,模型性能的提升一直是研究者和开发者们关注的重点。近期,我们尝试将CAFormer模块引入YoloV9模型中,以替换其原有的主干网络,这一创新性的改进带来了显著的性能提升。 CAFormer,作为MetaFormer框架下的一个变体,结合了深度可分离卷积和普通自注意力机制的优势。在底层阶段,CAFormer采用深度可分离卷积作为令牌混合器,有效降低了计算复杂度并保持了良好的性能;而在...

YoloV10改进策略:BackBone改进|RIFormer在YoloV10中的创新应用与显著性能提升

摘要 在深度学习领域,模型架构的不断优化是推动计算机视觉任务性能飞跃的关键驱动力。近期,我们创新性地将高效的RIFormer主干网络引入到了YoloV10目标检测模型中,这一变革不仅保留了YoloV10原有的高速推理能力,更在检测精度上实现了显著提升,为实时目标检测任务树立了新的标杆。 RIFormer主干网络简介: RIFormer是一种经过精心设计的视觉骨干网络,其核心在于去除了传统视觉Transf...

YOLOv9改进策略 :红外小目标 | 注意力 |多膨胀通道精炼(MDCR)模块,红外小目标暴力涨点| 2024年3月最新成果

 💡💡💡本文独家改进:多膨胀通道精炼(MDCR)模块,解决目标的大小微小以及红外图像中通常具有复杂的背景的问题点,2024年3月最新成果   💡💡💡红外小目标实现暴力涨点,只有几个像素的小目标识别率大幅度提升  💡💡💡多个私有数据集涨点明显,如缺陷检测NEU-DET、农业病害检测等;  改进1结构图如下:  改进2结构图如下:   《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多...

YoloV5改进策略:下采样改进|自研下采样模块(独家改进)|疯狂涨点|附结构图

摘要 本文介绍我自研的下采样模块。本次改进的下采样模块是一种通用的改进方法,你可以用分类任务的主干网络中,也可以用在分割和超分的任务中。已经有粉丝用来改进ConvNext模型,取得了非常好的效果,配合一些其他的改进,发一篇CVPR、ECCV之类的顶会完全没有问题。 本次我将这个模块用来改进YoloV5,实现大幅度涨点。 自研下采样模块及其变种 第一种改进方法 将输入分成两个分支,一个分支用卷积,一个分支...

YOLOv9改进策略:注意力机制 | 多维协作注意模块MCA,暴力涨点,效果秒杀ECA、SRM、CBAM等 | 即插即用系列,原创独家首发

  💡💡💡本文改进内容:多维协作注意模块MCA,暴力涨点,效果秒杀ECA、SRM、CBAM,创新性十足,可直接作为创新点使用。  改进结构图如下: 《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 】【SPPELAN & RepNCSPELAN4优化】【小目标性能提升】【前沿论文...

YoloV8改进策略:BackBone改进|GCNet(独家原创)

摘要 非局部网络(NLNet)通过为每个查询位置聚合特定于查询的全局上下文,为捕获长距离依赖关系提供了一个开创性的方法。然而,经过严格的实证分析,我们发现非局部网络所建模的全局上下文在图像中的不同查询位置几乎相同。在本文中,我们利用这一发现,创建了一个基于查询独立公式的简化网络,该网络保持了NLNet的准确性,但计算量大大减少。我们还观察到,这种简化的设计与压缩-激励网络(SENet)具有相似的结构。因...

YOLOv9改进策略 :IoU优化| Inner-IoU基于辅助边框的IoU损失,高效结合新型边界框相似度度量(MPDIoU)| 二次创新

   💡💡💡本文独家改进:Inner-IoU引入尺度因子 ratio 控制辅助边框的尺度大小用于计算损失,新型边界框相似度度量(MPDIoU)MPDIoU损失进行有效结合 💡💡💡适用场景:小目标数据集,进一步提升检测精度,强烈推荐 《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.005492(s)
2024-12-27 09:12:48 1735261968