大语言模型在人类层面预测未来的研究与应用

概述 这项研究将探讨语言模型(LM)能否预测未来事件。在这项研究中,将开发一个系统来自动收集信息、生成和汇总预测结果。将从一个竞争性预测平台收集有关问题的数据,以评估 LM 的预测能力。结果表明,LM 可以与具有竞争力的人类预测人员相媲美,甚至超过他们。研究表明,使用 LM 预测未来有可能为组织决策提供有用的信息。 论文地址:https://arxiv.org/pdf/2402.18563.pdf 介绍 ...

AI大模型探索之路-训练篇10:大语言模型Transformer库-Tokenizer组件实践

系列篇章💥 AI大模型探索之路-训练篇1:大语言模型微调基础认知 AI大模型探索之路-训练篇2:大语言模型预训练基础认知 AI大模型探索之路-训练篇3:大语言模型全景解读 AI大模型探索之路-训练篇4:大语言模型训练数据集概览 AI大模型探索之路-训练篇5:大语言模型预训练数据准备-词元化 AI大模型探索之路-训练篇6:大语言模型预训练数据准备-预处理 AI大模型探索之路-训练篇7:大语言模型Transf...

解锁图像新维度:剑桥联手英特尔,利用大语言模型重构逆向图形学!

跨领域时的泛化能力。受到大型语言模型(LLMs)在新环境中的零样本泛化能力的启发,我们探索了利用这些模型中编码的广泛世界知识来解决逆图形问题的可能性。本文提出了一个以LLM为中心的逆图形框架——逆图形大语言模型(Inverse-Graphics Large Language Model, IG-LLM),该框架自回归地将视觉嵌入解码为结构化的、组合式的3D场景表示。通过我们的研究,我们展示了LLMs在逆图形...

AI大模型探索之路-训练篇4:大语言模型训练数据集概览

常对话数据集1.3 合成数据集 2、人类对齐数据集 前言 在人工智能领域,构建强大的AI系统的关键步骤之一是大规模的语言模型预训练。为了实现这一目标,需要大量且多样化的训练数据。以下是对目前常用于训练大语言模型的数据集的整理与概述。 一、常用的预训练数据集 大语言模型在训练上需要大量的训练数据,这些数据需要涵盖广泛的内容范围。多领域、多源化的训练数据可以帮助大模型更加全面地学习真实世界的语言与知识,从而提高...

AI大模型探索之路-训练篇3:大语言模型全景解读

M)2. 第二阶段:神经语言模型(Neural Language Model, NLM)3. 第三阶段:预训练语言模型(Pre-trained Language Model, PLM)4. 第四阶段:大语言模型(Large Language Model, LLM) 二、大语言模型的能力特点三、大语言模型关键技术四、大语言模型的构建过程1.预训练阶段2.有监督微调阶段3.奖励建模阶段4.强化学习阶段 前言 大...

微软&卡内基梅隆大学:无外部干预,GPT4等大语言模型难以自主探索

目录 引言:LLMs在强化学习中的探索能力探究 研究背景:LLMs的在情境中学习能力及其重要性 实验设计:多臂老虎机环境中的LLMs探索行为 实验结果概览:LLMs在探索任务中的普遍失败 成功案例分析:Gpt-4在特定配置下的探索成功 探索失败的原因分析 相关工作回顾:LLMs能力研究的相关文献 讨论与未来工作方向 总结 引言:LLMs在强化学习中的探索能力探究 在强化学习和决策制定的核心能力中,探索(e...

大语言模型LLM《提示词工程指南》学习笔记02

文章目录 大语言模型LLM《提示词工程指南》学习笔记02设计提示时需要记住的一些技巧零样本提示少样本提示链式思考(CoT)提示自我一致性生成知识提示 大语言模型LLM《提示词工程指南》学习笔记02 设计提示时需要记住的一些技巧 指令 您可以使用命令来指示模型执行各种简单任务,例如“写入”、“分类”、“总结”、“翻译”、“排序”等,从而为各种简单任务设计有效的提示。 具体性 对您希望模型执行的指令和任务非常...

大语言模型微调相关的finetuning、CE Loss、RLHF如何配合工作

文章目录 大语言模型微调相关的finetuning、CE Loss、RLHF如何配合工作概念定义虽然有点啰嗦,但是值得反复强化概念 RAG、Agent、Finetuning之间的关系RAG、Agent、Finetuning各自的技术方法步骤流程示例代码 pytorch + 抱抱脸Hugging Face基于预训练模型做微调基于预训练的模型做FineTune查看模型结构并理解FineTune预训练第一步:加...

阿里云PAI + pytorch大语言模型开发环境简介

文章目录 阿里云PAI + pytorch大语言模型开发环境简介PAI-DSW 快速入门1. 安装和配置2. 模型训练2.1 数据集准备2.2 模型训练脚本准备2.3 提交训练作业 3. 部署模型为推理服务4. 调用推理服务 阿里云PAI + pytorch大语言模型开发环境简介 PAI-DSW 快速入门 阿里云机器学习PAI(Platform of Artificial Intelligence) 是集...

探索大语言模型(LLM):部分数据集介绍

探索大语言模型(LLM)的宝库:精选数据集介绍 在人工智能的黄金时代,大语言模型(LLM)的发展正以惊人的速度推进。它们不仅改变了我们与机器交互的方式,还在持续拓展技术的边界。作为这一进程的核心,数据集扮演着不可或缺的角色。下面分享一些我精心整理的LLM数据集,这些数据集各具特色,是研究和开发大语言模型不可多得的资源。 维基百科数据集 地址: Hugging Face - 维基百科数据集内容: 这个数据集...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.022921(s)
2024-12-22 14:19:30 1734848370