欺诈文本分类检测(十七):支持分类原因训练

1. 引言 前文数据校正与增强进行了数据增强,本文将使用增强后的数据对模型进行进一步训练,以便得到能同时预测出分类标签、欺诈者、分类原因多个信息的模型。 为此,我们需要对整个训练过程进行调整,包括: 交叉训练逻辑封装数据序列化的改造评测方法改造 2. 交叉训练封装 首先,我们将前文 交叉训练验证的代码封装为一个脚本trainer_cross.py,方便复用。内容如下: import globimp...

欺诈文本分类检测(十六):支持分类原因评测改造

1. 引言 经过前文对数据的校正与增强后,我们的预期生成结果中不再仅仅是分类标签,还多了欺诈者和分类原因。这样之前模型评测和批量评测两篇文章所封装的evaluate.py脚本就不再满足,需要对脚本进行改造,以支持新输出内容的评测。 新的预期结果中共包含三个信息,由于三个信息的特点不同,需要为每个字段制定不同的评测方式: is_fraud: 属于二分类,继续采用精确率和召回率作为评测指标。fraud_...

计算机毕业设计Python深度学习垃圾邮件分类检测系统 朴素贝叶斯算法 机器学习 人工智能 数据可视化 大数据毕业设计 Python爬虫 知识图谱 文本分类

基于朴素贝叶斯的邮件分类系统设计 摘要:为了解决垃圾邮件导致邮件通信质量被污染、占用邮箱存储空间、伪装正常邮件进行钓鱼或诈骗以及邮件分类问题。应用Python、Sklearn、Echarts技术和Flask、Lay-UI框架,使用MySQL作为系统数据库,设计并实现了基于朴素贝叶斯算法的邮件分类系统,并以Web形式部署在本地计算机。运用Sklearn库对KNN算法、SVM算法和朴素贝叶斯算法进行建模和...

YoloV10改进策略:Block改进|PromptIR(NIPS‘2023)|轻量高效,即插即用|(适用于分类、分割、检测等多种场景)

文章目录 摘要 官方结果 代码详解 如何在自己的论文中描述 摘要 本文使用PromptIR框架中的PGM模块来改进YoloV10。PGM(Prompt Generation Module)模块是PromptIR框架中的一个重要组成部分,主要负责生成输入条件化的提示(prompts)。这些提示是一组可学习的参数,它们与输入特征相互作用,以嵌入有关各种类型图像退化的信息。 PGM模块的核心功能是动态地从...

电脑驱动分类

电脑驱动程序(驱动程序)是操作系统与硬件设备之间的桥梁,用于使操作系统能够识别并与硬件设备进行通信。以下是常见的驱动分类: 1. 设备驱动程序 显示驱动程序:控制显卡和显示器的显示功能,负责图形渲染和屏幕显示。 示例:NVIDIA、AMD 显示驱动程序。打印机驱动程序:允许操作系统与打印机通信,控制打印任务。 示例:HP、Canon 打印机驱动程序。声卡驱动程序:管理音频输入和输出,与声卡硬件交互。 ...

深度学习之贝叶斯分类

贝叶斯分类器 1 图解极大似然估计 极大似然估计的原理,用一张图片来说明,如下图所示: ​ 例:有两个外形完全相同的箱子,1号箱有99只白球,1只黑球;2号箱有1只白球,99只黑球。在一次实验中,取出的是黑球,请问是从哪个箱子中取出的? ​ 一般的根据经验想法,会猜测这只黑球最像是从2号箱取出,此时描述的“最像”就有“最大似然”的意思,这种想法常称为“最大似然原理”。 2 极大似然估计原理 ​ 总结...

文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计

一、介绍 使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。 本项目通过开发一个基于Python语言的文本情感分析系统,能够自动识别文本中的情感倾向,并区分积极情...

python利用深度学习(Keras)进行癫痫分类

一、癫痫介绍         癫痫,即俗称“羊癫风”,是由多种病因引起的慢性脑功能障碍综合症,是仅次于脑血管病的第二大脑部疾病。癫痫发作的直接原因是脑部神经元反复地突发性过度放电所导致的间歇性中枢神经系统功能失调。临床上常表现为突然意识丧失、全身抽搐以及精神异常等。癫痫给患者带来巨大的痛苦和身心伤害,严重时甚至危及生命,儿童患者会影响到身体发育和智力发育。 脑电图是研究癫痫发作特征的重要工具,它是一种...

【MATLAB源码-第244期】基于MATLAB的BP神经网络语音特征信号分类,输出原信号与预测信号对比图以及预测误差和正确率。

操作环境: MATLAB 2022a 1、算法描述 BP神经网络(Back Propagation Neural Network)是一种广泛应用于模式识别和分类问题的人工神经网络。在本次语音特征信号分类任务中,我们将详细描述如何通过BP神经网络实现对四类语音信号的分类。 首先,我们需要准备和预处理数据。我们有四类语音信号数据,分别存储在四个文件中。我们通过加载这些文件,将每类信号的数据合并成一个大的数...

基于CNN的医学X-Ray图像分类全程解析

数据集 我们所使用的数据集是胸部 X 光图像,它包含 2 个类别:肺炎和正常。该数据集由 Paulo Breviglieri 发布,是 Paul Mooney 最受欢迎数据集的修订版,此更新版本的数据集在验证集和测试集中的图像分布更加均衡。数据集分为 3 个文件夹(训练、测试、验证),包含肺炎和正常的子文件夹。 总数(图像):5,856例 训练观察:4,192(1,082 个正常病例,3,110 个...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.009787(s)
2024-12-22 00:59:41 1734800381